Rimple Chaudhary, Jyoti Kaushal, Gursharan Singh, A. Kaur, S. Arya
{"title":"Melioration of enzymatic ethanol production from alkali pre-treated paddy straw promoted by addition of surfactant","authors":"Rimple Chaudhary, Jyoti Kaushal, Gursharan Singh, A. Kaur, S. Arya","doi":"10.1080/10242422.2022.2055469","DOIUrl":null,"url":null,"abstract":"Abstract Along with the cellulase enzyme, xylanase plays an efficient role in the production of biofuel from agricultural wastes by degrading the xylan sugar present in the hemicellulose of cell wall. This study aims to improve the sugar production from biomass by the use of different enzymes with surfactant. The objective of this study is to compare sugar production and bioethanol production from sodium hydroxide along polyethylene glycol pre-treated paddy straw (Oryza sativa L.) with different combination of xylanase and cellulose enzymes along with lignin-degrading laccase enzyme. In results, 10.87 g/l of ethanol with saccharification of 64.51% ± 0.90 was obtained when xylanase and laccase were used, while 18.40 ± 0.56 g/l of ethanol with saccharification of 84.01%±1.09 was obtained when cellulase and laccase enzymes were used. Maximum bioethanol production was found to be 19.20 ± 0.26g/l, which was obtained by combination of xylanase, cellulase and laccase enzymes together at 37 °C after 36 h.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":"41 1","pages":"322 - 331"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10242422.2022.2055469","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Along with the cellulase enzyme, xylanase plays an efficient role in the production of biofuel from agricultural wastes by degrading the xylan sugar present in the hemicellulose of cell wall. This study aims to improve the sugar production from biomass by the use of different enzymes with surfactant. The objective of this study is to compare sugar production and bioethanol production from sodium hydroxide along polyethylene glycol pre-treated paddy straw (Oryza sativa L.) with different combination of xylanase and cellulose enzymes along with lignin-degrading laccase enzyme. In results, 10.87 g/l of ethanol with saccharification of 64.51% ± 0.90 was obtained when xylanase and laccase were used, while 18.40 ± 0.56 g/l of ethanol with saccharification of 84.01%±1.09 was obtained when cellulase and laccase enzymes were used. Maximum bioethanol production was found to be 19.20 ± 0.26g/l, which was obtained by combination of xylanase, cellulase and laccase enzymes together at 37 °C after 36 h.
期刊介绍:
Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species.
Papers are published in the areas of:
Mechanistic principles
Kinetics and thermodynamics of biocatalytic processes
Chemical or genetic modification of biocatalysts
Developments in biocatalyst''s immobilization
Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes
Biomimetic systems
Environmental applications of biocatalysis
Metabolic engineering
Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.