{"title":"Athlete injury detection and emergency treatment in mobile smart medical system","authors":"Yiqiao Zhang, Qian Zhang, Yuhe Liu","doi":"10.3389/fphy.2023.1191485","DOIUrl":null,"url":null,"abstract":"Using the sports injury monitoring system to detect injury symptoms in time and take effective treatment measures in time can reduce the damage caused by sports injuries to athletes. However, many current detection methods lack the support of advanced technologies and algorithms, resulting in poor performance in sports injury detection. Based on this, a mobile intelligent medical system is designed in this paper, and an athlete injury detection method based on CNN and sensors is proposed. The method includes three parts: motion region acquisition, motion injury feature extraction, and motion injury detection. In addition, for emergency treatment, this paper proposes a variety of CNN-based image data analysis methods to ensure the accuracy of the processing process. The experimental results show that the athlete injury detection method based on the convolutional neural network improves the detection accuracy by 6.73% compared with the traditional method, which also provides an important reference for the future application of ML in medical treatment. The research confirms that the construction and analysis of mobile intelligent medical system can effectively improve the accuracy of sports injury detection.","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2023.1191485","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using the sports injury monitoring system to detect injury symptoms in time and take effective treatment measures in time can reduce the damage caused by sports injuries to athletes. However, many current detection methods lack the support of advanced technologies and algorithms, resulting in poor performance in sports injury detection. Based on this, a mobile intelligent medical system is designed in this paper, and an athlete injury detection method based on CNN and sensors is proposed. The method includes three parts: motion region acquisition, motion injury feature extraction, and motion injury detection. In addition, for emergency treatment, this paper proposes a variety of CNN-based image data analysis methods to ensure the accuracy of the processing process. The experimental results show that the athlete injury detection method based on the convolutional neural network improves the detection accuracy by 6.73% compared with the traditional method, which also provides an important reference for the future application of ML in medical treatment. The research confirms that the construction and analysis of mobile intelligent medical system can effectively improve the accuracy of sports injury detection.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.