{"title":"Technical benchmarking and challenges of kilowatt scale vanadium redox flow battery","authors":"Manshu Kapoor, Anil Verma","doi":"10.1002/wene.439","DOIUrl":null,"url":null,"abstract":"Unique features of vanadium redox flow battery (VRFB), such as easy scalability and long durability, qualifies it as one of the prominent renewable energy storage technologies. Attracted by its features, scientific and commercial community around the globe have now begun to test prototypes/demonstrations of VRFB for a wide array of applications that deal at a scale of kW‐MW. A few scientific groups have discussed the design and performance of kW‐scale (up to 10 kW) VRFB in literature. It is interesting to note that the discussed designs have been developed with a diverse approach and have achieved different results. In this review, we critically examine and discuss those contributions at kW‐scale VRFB by analyzing the materials associated with their design, understanding the development of the flow engineering aspects in order to tackle the pressure and shunt current losses and the overall electrochemical performance. Till date, kW‐scale VRFB system has achieved an energy efficiency of ~80% at current densities of 100 mA⋅cm−2. Though the choice for majority of VRFB components is fixed, the right choice for its separator/membrane still needs to be standardized. With these aspects in picture, this review article will help to lay a background for researchers and engineers to know the present state‐of‐art and engineering issues at kW‐scale VRFB, which is a building block for scaling up.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.439","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 12
Abstract
Unique features of vanadium redox flow battery (VRFB), such as easy scalability and long durability, qualifies it as one of the prominent renewable energy storage technologies. Attracted by its features, scientific and commercial community around the globe have now begun to test prototypes/demonstrations of VRFB for a wide array of applications that deal at a scale of kW‐MW. A few scientific groups have discussed the design and performance of kW‐scale (up to 10 kW) VRFB in literature. It is interesting to note that the discussed designs have been developed with a diverse approach and have achieved different results. In this review, we critically examine and discuss those contributions at kW‐scale VRFB by analyzing the materials associated with their design, understanding the development of the flow engineering aspects in order to tackle the pressure and shunt current losses and the overall electrochemical performance. Till date, kW‐scale VRFB system has achieved an energy efficiency of ~80% at current densities of 100 mA⋅cm−2. Though the choice for majority of VRFB components is fixed, the right choice for its separator/membrane still needs to be standardized. With these aspects in picture, this review article will help to lay a background for researchers and engineers to know the present state‐of‐art and engineering issues at kW‐scale VRFB, which is a building block for scaling up.
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.