"Monotone iteration method for general nonlinear two point boundary value problems with deviating arguments"

IF 1.4 4区 数学 Q1 MATHEMATICS
B. Dhage, Janhavi B. Dhage, J. Ali
{"title":"\"Monotone iteration method for general nonlinear two point boundary value problems with deviating arguments\"","authors":"B. Dhage, Janhavi B. Dhage, J. Ali","doi":"10.37193/cjm.2022.02.11","DOIUrl":null,"url":null,"abstract":"\"In this paper we shall study the existence and approximation results for a nonlinear two point boundary value problem of a second order ordinary differential equation with general form of Dirichlet/Neumann type boundary conditions. The nonlinearity present on right hand side of the differential equation is assumed to be Caratho´eodory containing a deviating argument. The proofs of the main results are based on a monotone iteration method contained in the hybrid fixed point principles of Dhage (2014) in an ordered Banach space. Finally, some remarks concerning the merits of our monotone iteration method over other frequently used iteration methods in the theory of nonlinear differential equations are given in the conclusion.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.02.11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"In this paper we shall study the existence and approximation results for a nonlinear two point boundary value problem of a second order ordinary differential equation with general form of Dirichlet/Neumann type boundary conditions. The nonlinearity present on right hand side of the differential equation is assumed to be Caratho´eodory containing a deviating argument. The proofs of the main results are based on a monotone iteration method contained in the hybrid fixed point principles of Dhage (2014) in an ordered Banach space. Finally, some remarks concerning the merits of our monotone iteration method over other frequently used iteration methods in the theory of nonlinear differential equations are given in the conclusion."
“具有偏差变元的一般非线性两点边值问题的单调迭代方法”
“本文研究了一类具有Dirichlet/Neumann型边界条件一般形式的二阶常微分方程的非线性两点边值问题的存在性和逼近结果。假设微分方程右侧存在的非线性是含有偏差自变量的Caratho´eodory其基于有序Banach空间中Dhage(2014)的混合不动点原理中包含的单调迭代方法。最后,在结论中对我们的单调迭代方法与非线性微分方程理论中常用的迭代方法相比的优点进行了评述。“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信