On Sequence Spaces Due to lth Order q-Difference Operator and its Spectrum

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Taja Yaying, Bipan Hazarika, Syed Abdul Mohiuddine, Mikail Et
{"title":"On Sequence Spaces Due to lth Order q-Difference Operator and its Spectrum","authors":"Taja Yaying,&nbsp;Bipan Hazarika,&nbsp;Syed Abdul Mohiuddine,&nbsp;Mikail Et","doi":"10.1007/s40995-023-01487-7","DOIUrl":null,"url":null,"abstract":"<div><p>We present a quantum analog <span>\\(\\nabla ^{l}_q\\)</span> of the <i>l</i>th order backward difference operator <span>\\(\\nabla ^{l}\\)</span> and analyze its basic properties. We study the sequence spaces <span>\\(c(\\nabla ^{l}_q)\\)</span> and <span>\\(c_0(\\nabla ^{l}_q)\\)</span> defined as the domain of <span>\\(\\nabla ^{l}_q\\)</span> in the spaces <i>c</i> and <span>\\(c_0\\)</span>, respectively. Some basic properties, inclusion relations, Schauder basis, and <span>\\(\\alpha\\)</span>-,<span>\\(\\beta\\)</span>-, and <span>\\(\\gamma\\)</span>-duals of the spaces <span>\\(c_0(\\nabla ^{l}_q)\\)</span> and <span>\\(c(\\nabla ^{l}_q)\\)</span> are obtained. Some theorems characterizing matrix transformations related to these spaces are stated and proved. Finally, we analyze the spectral divisions of <span>\\(\\nabla ^{l}_q\\)</span> over the space <span>\\(c_0.\\)</span></p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"47 4","pages":"1271 - 1281"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40995-023-01487-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-023-01487-7","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We present a quantum analog \(\nabla ^{l}_q\) of the lth order backward difference operator \(\nabla ^{l}\) and analyze its basic properties. We study the sequence spaces \(c(\nabla ^{l}_q)\) and \(c_0(\nabla ^{l}_q)\) defined as the domain of \(\nabla ^{l}_q\) in the spaces c and \(c_0\), respectively. Some basic properties, inclusion relations, Schauder basis, and \(\alpha\)-,\(\beta\)-, and \(\gamma\)-duals of the spaces \(c_0(\nabla ^{l}_q)\) and \(c(\nabla ^{l}_q)\) are obtained. Some theorems characterizing matrix transformations related to these spaces are stated and proved. Finally, we analyze the spectral divisions of \(\nabla ^{l}_q\) over the space \(c_0.\)

关于第l阶q差算子的序列空间及其谱
我们提出了一个量子模拟\(\nabla ^{l}_q\)的第l阶后向差分算子\(\nabla ^{l}\),并分析了它的基本性质。我们研究了分别在空间c和\(c_0\)中定义为\(\nabla ^{l}_q\)定义域的序列空间\(c(\nabla ^{l}_q)\)和\(c_0(\nabla ^{l}_q)\)。得到了空间\(c_0(\nabla ^{l}_q)\)和\(c(\nabla ^{l}_q)\)的一些基本性质、包含关系、Schauder基和\(\alpha\) -、\(\beta\) -、\(\gamma\) -对偶。提出并证明了与这些空间有关的矩阵变换的一些定理。最后,我们分析了\(\nabla ^{l}_q\)在空间上的光谱划分 \(c_0.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信