Simplicial volume and essentiality of manifolds fibered over spheres

IF 0.8 2区 数学 Q2 MATHEMATICS
Thorben Kastenholz, Jens Reinhold
{"title":"Simplicial volume and essentiality of manifolds fibered over spheres","authors":"Thorben Kastenholz,&nbsp;Jens Reinhold","doi":"10.1112/topo.12286","DOIUrl":null,"url":null,"abstract":"<p>We study the question when a manifold that fibers over a sphere can be rationally essential, or have positive simplicial volume. More concretely, we show that mapping tori of manifolds (whose fundamental groups can be quite arbitrary) of dimension <math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>⩾</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$2n +1 \\geqslant 7$</annotation>\n </semantics></math> with non-zero simplicial volume are very common. This contrasts the case of fiber bundles over a sphere of dimension <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d\\geqslant 2$</annotation>\n </semantics></math>: we prove that their total spaces are rationally inessential if <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>, and always have simplicial volume 0. Using a result by Dranishnikov, we also deduce a surprising property of macroscopic dimension, and we give two applications to positive scalar curvature and characteristic classes, respectively.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"192-206"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12286","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12286","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the question when a manifold that fibers over a sphere can be rationally essential, or have positive simplicial volume. More concretely, we show that mapping tori of manifolds (whose fundamental groups can be quite arbitrary) of dimension 2 n + 1 7 $2n +1 \geqslant 7$ with non-zero simplicial volume are very common. This contrasts the case of fiber bundles over a sphere of dimension d 2 $d\geqslant 2$ : we prove that their total spaces are rationally inessential if d 3 $d\geqslant 3$ , and always have simplicial volume 0. Using a result by Dranishnikov, we also deduce a surprising property of macroscopic dimension, and we give two applications to positive scalar curvature and characteristic classes, respectively.

Abstract Image

球体上纤维流形的简单体积和本质
我们研究了一个在球体上纤维的流形何时可以是合理的本质,或者具有正的单纯形体积的问题。更具体地说,我们证明了维数为2n+1⩾7$2n+1\geqslant 7$的流形(其基群可以是相当任意的)与非零单体的映射tori是非常常见的。这与维度为d⩾2$d\geqslant 2$的球面上的纤维束的情况形成了对比:我们证明了如果d \10878.; 3$d\getqslant 3$,它们的总空间是合理的不重要的,并且总是具有单纯体积0。利用Dranishnikov的结果,我们还推导了宏观维数的一个令人惊讶的性质,并分别给出了正标量曲率和特征类的两个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信