{"title":"Magnetic Liquid Metals Manipulated in the Three-Dimensional Free Space","authors":"Liang Hu*, Hongzhang Wang, Xiaofei Wang, Xiao Liu, Jiarui Guo, Jing Liu*","doi":"10.1021/acsami.8b22699","DOIUrl":null,"url":null,"abstract":"<p >In the present study, a magnetic liquid metal droplet (MLMD), which can be stretched in large scales both horizontally and vertically in the free space, is introduced. This MLMD is fabricated based on a multimaterial system including liquid metals, iron particles, and electrolytes. Such remarkable stretching capacity is reversible, long-lasting, and can be repeated for multiple times. The seemingly contrary properties, the good stretchability and the mechanic strength for three-dimensional (3D) stretch, should owe to the surface oxide over the MLMD. On the basis of the 3D stretching ability of the MLMD, an intelligent scalable conductor was achieved, which can make electrical connections at various directions in the 3D free space. Moreover, the vertically stretched MLMD can move horizontally with its half body in the solution and the other half in the air, which resembles the nature of an upright walking amphibian. All the behaviors can be precisely, conveniently, and contactlessly controlled by the magnetic field provided by permanent magnets. With all the appealing properties, this MLMD presents a fundamental and promising platform for the liquid metals to further develop the multi-freedom actuation in free space and eventually lead to the dynamically reconfigurable intelligent and biomimetic soft robots in the future.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"11 8","pages":"8685–8692"},"PeriodicalIF":8.2000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acsami.8b22699","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.8b22699","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 81
Abstract
In the present study, a magnetic liquid metal droplet (MLMD), which can be stretched in large scales both horizontally and vertically in the free space, is introduced. This MLMD is fabricated based on a multimaterial system including liquid metals, iron particles, and electrolytes. Such remarkable stretching capacity is reversible, long-lasting, and can be repeated for multiple times. The seemingly contrary properties, the good stretchability and the mechanic strength for three-dimensional (3D) stretch, should owe to the surface oxide over the MLMD. On the basis of the 3D stretching ability of the MLMD, an intelligent scalable conductor was achieved, which can make electrical connections at various directions in the 3D free space. Moreover, the vertically stretched MLMD can move horizontally with its half body in the solution and the other half in the air, which resembles the nature of an upright walking amphibian. All the behaviors can be precisely, conveniently, and contactlessly controlled by the magnetic field provided by permanent magnets. With all the appealing properties, this MLMD presents a fundamental and promising platform for the liquid metals to further develop the multi-freedom actuation in free space and eventually lead to the dynamically reconfigurable intelligent and biomimetic soft robots in the future.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.