{"title":"Evaluation of Terpenoids as Dipeptidyl Peptidase 4 Lead Molecules: Molecular Docking and Dynamics Simulation Study","authors":"","doi":"10.33263/briac134.376","DOIUrl":null,"url":null,"abstract":"About 966 billion US dollars have been spent globally treating and managing diabetic patients. Notwithstanding individuals' substantial access to the required primary medical services and essential medicines, it is tempting to get momentum in identifying new chemical entities, biologics, or small molecules as drug candidates that are prophylactically and therapeutically effective against lifestyle-based maladies, thereby backing the overall health mission of Sustainable Development Goals. Towards this context, the study aims to screen natural inhibitor(s) targeting dipeptidyl peptidase 4 using hybrid approaches of bioinformatics and medicinal chemistry. Data set of 513 ligands of terpenoids in nature was retrieved from the naturally occurring plant-based anticancerous compound-activity-target database (NPACT) and performed docking studies. Sitagliptin depicted substantial binding affinity among reference drugs with dipeptidyl peptidase 4 (DPP IV) (binding energy: -8.63 kcal/mol, Inhibition constant: 163.65 μM). Among all terpenoids, Asiatic acid (ΔG: -9.95 kcal/mol, 85.23 μM), Aucubin (-9.86 kcal/mol, 98.98 μM), Ailanquassin A (-9.25 kcal/mol, 156.23 μM), and 6-α-hydroxyneopulchellin (-9.18 kcal/mol, 189.76 μM) depicted strong binding affinities with DPP IV compared to Sitagliptin. Based on the MD simulation findings, Asiatic acid and Aucubin were better lead molecules than Sitagliptin. However, holistic wet-lab validations are required before manifesting their therapeutic implications against diabetes.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
About 966 billion US dollars have been spent globally treating and managing diabetic patients. Notwithstanding individuals' substantial access to the required primary medical services and essential medicines, it is tempting to get momentum in identifying new chemical entities, biologics, or small molecules as drug candidates that are prophylactically and therapeutically effective against lifestyle-based maladies, thereby backing the overall health mission of Sustainable Development Goals. Towards this context, the study aims to screen natural inhibitor(s) targeting dipeptidyl peptidase 4 using hybrid approaches of bioinformatics and medicinal chemistry. Data set of 513 ligands of terpenoids in nature was retrieved from the naturally occurring plant-based anticancerous compound-activity-target database (NPACT) and performed docking studies. Sitagliptin depicted substantial binding affinity among reference drugs with dipeptidyl peptidase 4 (DPP IV) (binding energy: -8.63 kcal/mol, Inhibition constant: 163.65 μM). Among all terpenoids, Asiatic acid (ΔG: -9.95 kcal/mol, 85.23 μM), Aucubin (-9.86 kcal/mol, 98.98 μM), Ailanquassin A (-9.25 kcal/mol, 156.23 μM), and 6-α-hydroxyneopulchellin (-9.18 kcal/mol, 189.76 μM) depicted strong binding affinities with DPP IV compared to Sitagliptin. Based on the MD simulation findings, Asiatic acid and Aucubin were better lead molecules than Sitagliptin. However, holistic wet-lab validations are required before manifesting their therapeutic implications against diabetes.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.