Hamid Hashemi, Jakob M. Christensen, Peter Glarborg, Sander Gersen, Martijn van Essen, Ziyu Wang, Yiguang Ju
{"title":"High-pressure oxidation of n-butane","authors":"Hamid Hashemi, Jakob M. Christensen, Peter Glarborg, Sander Gersen, Martijn van Essen, Ziyu Wang, Yiguang Ju","doi":"10.1002/kin.21678","DOIUrl":null,"url":null,"abstract":"<p>The oxidation of <i>n</i>-butane at elevated pressures has been investigated by experiments in a laminar flow reactor at 100 bar and temperatures of 450–900 K. The onset temperature for reaction increased from 550 K under oxidizing conditions (Φ = 0.02) to 625 K under reducing conditions (Φ = 13). NTC behavior was observed at 600–650 K (Φ = 0.02) and 625–675 K (Φ = 1.0). A detailed chemical kinetic model for the oxidation of <i>n</i>-butane was established. The present model and those suggested in literature were evaluated against the present experimental results and literature data at elevated pressures. None of the tested models could accurately reproduce the NTC behavior of <i>n</i>-butane under stoichiometric conditions of the present study, but all evaluated models could reproduce experimental data from literature with different levels of accuracy.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"55 11","pages":"688-706"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21678","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21678","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The oxidation of n-butane at elevated pressures has been investigated by experiments in a laminar flow reactor at 100 bar and temperatures of 450–900 K. The onset temperature for reaction increased from 550 K under oxidizing conditions (Φ = 0.02) to 625 K under reducing conditions (Φ = 13). NTC behavior was observed at 600–650 K (Φ = 0.02) and 625–675 K (Φ = 1.0). A detailed chemical kinetic model for the oxidation of n-butane was established. The present model and those suggested in literature were evaluated against the present experimental results and literature data at elevated pressures. None of the tested models could accurately reproduce the NTC behavior of n-butane under stoichiometric conditions of the present study, but all evaluated models could reproduce experimental data from literature with different levels of accuracy.
在层流反应器中研究了正丁烷在高压下的氧化反应,实验条件为100 bar,温度为450-900 K。反应起始温度由氧化条件下的550 K (Φ = 0.02)提高到还原条件下的625 K (Φ = 13)。在600-650 K (Φ = 0.02)和625-675 K (Φ = 1.0)时观察到NTC行为。建立了正丁烷氧化反应的详细化学动力学模型。本模型和文献中建议的模型在高压下根据本实验结果和文献数据进行了评估。在本研究的化学计量条件下,所有被测试的模型都不能准确地再现正丁烷的NTC行为,但所有被评估的模型都能以不同程度的精度再现文献中的实验数据。
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.