Numerical and experimental analysis of the heat transfer process in a railway disc brake tested on a dynamometer stand

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
A. Wolff, Jacek Kukulski
{"title":"Numerical and experimental analysis of the heat transfer process in a railway disc brake tested on a dynamometer stand","authors":"A. Wolff, Jacek Kukulski","doi":"10.1515/eng-2022-0466","DOIUrl":null,"url":null,"abstract":"Abstract The effectiveness of railway brakes is highly dependent on the thermal condition of the brake disc and friction linings. An effective research method for the heat transfer process in brakes was computer simulation and experimental tests on a full-size dynamometric test bench. A two-dimensional, axially symmetric numerical model of transient thermal conductivity in a railway brake was presented. Appropriate boundary conditions of the problem were applied, describing the heat generated in the brake and discharged to the environment. The problem was solved using the finite-element method. This article presents exemplary results of the brake temperature calculations obtained using the numerical model and the results of experimental tests carried out on two types of brake discs.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The effectiveness of railway brakes is highly dependent on the thermal condition of the brake disc and friction linings. An effective research method for the heat transfer process in brakes was computer simulation and experimental tests on a full-size dynamometric test bench. A two-dimensional, axially symmetric numerical model of transient thermal conductivity in a railway brake was presented. Appropriate boundary conditions of the problem were applied, describing the heat generated in the brake and discharged to the environment. The problem was solved using the finite-element method. This article presents exemplary results of the brake temperature calculations obtained using the numerical model and the results of experimental tests carried out on two types of brake discs.
铁路盘式制动器在测功机架上的传热过程的数值与实验分析
摘要铁路制动器的有效性在很大程度上取决于制动盘和摩擦衬片的热状况。在全尺寸测功台上进行计算机模拟和实验测试是研究制动器传热过程的一种有效方法。建立了铁路制动器瞬态导热系数的二维轴对称数值模型。应用了问题的适当边界条件,描述了制动器中产生并排放到环境中的热量。这个问题是用有限元法解决的。本文介绍了使用数值模型获得的制动器温度计算的示例性结果以及在两种类型的制动盘上进行的实验测试的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Engineering
Open Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.90
自引率
0.00%
发文量
52
审稿时长
30 weeks
期刊介绍: Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信