A noninequality for the fractional gradient

IF 0.5 4区 数学 Q3 MATHEMATICS
Daniel Spector
{"title":"A noninequality for the fractional gradient","authors":"Daniel Spector","doi":"10.4171/pm/2031","DOIUrl":null,"url":null,"abstract":"In this paper we give a streamlined proof of an inequality recently obtained by the author: For every $\\alpha \\in (0,1)$ there exists a constant $C=C(\\alpha,d)>0$ such that \r\n\\begin{align*} \\|u\\|_{L^{d/(d-\\alpha),1}(\\mathbb{R}^d)} \\leq C \\| D^\\alpha u\\|_{L^1(\\mathbb{R}^d;\\mathbb{R}^d)} \\end{align*} for all $u \\in L^q(\\mathbb{R}^d)$ for some $1 \\leq q<d/(1-\\alpha)$ such that $D^\\alpha u:=\\nabla I_{1-\\alpha} u \\in L^1(\\mathbb{R}^d;\\mathbb{R}^d)$. We also give a counterexample which shows that in contrast to the case $\\alpha =1$, the fractional gradient does not admit an $L^1$ trace inequality, i.e. $\\| D^\\alpha u\\|_{L^1(\\mathbb{R}^d;\\mathbb{R}^d)}$ cannot control the integral of $u$ with respect to the Hausdorff content $\\mathcal{H}^{d-\\alpha}_\\infty$. The main substance of this counterexample is a result of interest in its own right, that even a weak-type estimate for the Riesz transforms fails on the space $L^1(\\mathcal{H}^{d-\\beta}_\\infty)$, $\\beta \\in [1,d)$. It is an open question whether this failure of a weak-type estimate for the Riesz transforms extends to $\\beta \\in (0,1)$.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/pm/2031","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we give a streamlined proof of an inequality recently obtained by the author: For every $\alpha \in (0,1)$ there exists a constant $C=C(\alpha,d)>0$ such that \begin{align*} \|u\|_{L^{d/(d-\alpha),1}(\mathbb{R}^d)} \leq C \| D^\alpha u\|_{L^1(\mathbb{R}^d;\mathbb{R}^d)} \end{align*} for all $u \in L^q(\mathbb{R}^d)$ for some $1 \leq q
分数阶梯度的一个非不等式
本文给出了作者最近得到的一个不等式的一个简化证明:对于(0,1)$中的每一个$\alpha\,都存在一个常数$C=C(\alpha,d)>0$,使得对于L^q(\mathbb{R}^d)中的所有$u\,\ begin{align*}\|u\|_{L^{d/(d-\alpha),1}对于一些$1\leq q<d/(1-\alpha)$,使得$d^\alpha u:=\abla I_{1-\alpha}u\在L^1(\mathbb{R}^d;\mathbb{R}^d)$中。我们还举了一个反例,表明与$\alpha=1$的情况相反,分数梯度不允许$L^1$迹不等式,即$\|D^\alpha-u\|_{L^1(\mathbb{R}^D;\mathbb{R}^ D)}$不能控制$u$相对于Hausdorff内容$\mathcal{H}^{D-\alpha}_\infty$的积分。这个反例的主要内容是对Riesz变换的弱类型估计在空间$L^1(\mathcal{H}^{d-\beta}_\infty)$,$\beta\in[1,d)$上失败本身的兴趣的结果。Riesz转换的弱类型估计的失败是否扩展到$\beta\ in(0,1)$是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信