{"title":"Numerical investigation of fire in the cavity of naturally ventilated double skin façade with venetian blinds","authors":"Youxian Huang, S. Yeboah, Jingjing Shao","doi":"10.1177/01436244221129763","DOIUrl":null,"url":null,"abstract":"Double skin façades (DSFs), offer great views, architectural aesthetics, and energy savings. Yet, in a fire event the glass façade breaks leading to risks to human life and firefighting difficulties. Shading devices incorporated to prevent unfavourable heat gains to reduce cooling load though offer energy savings potentially present other challenges in firefighting and occupants’ evacuation. In this study, Fire Dynamic Simulator (FDS) was used to numerically investigate the spread of a 5 MW HRR polyurethane GM27 fire in a multi-storey double skin façade building with Venetian blinds placed in its cavity. The blinds were positioned 0.4 m away from the internal glazing, middle of the cavity and 0.4 m away from the external glazing respectively. In each blind position the slat angle was opened at 0°, 45°, 90° and 135° respectively. The results show peak inner glazing surface temperature ranged between 283°C to 840°C depending on the thermocouple position, the Venetian blind position and slat opening angle. Without Venetian blinds, peak inner glazing surface temperatures ranged between 468°C to 614°C. In all cases except when the slat angle was 0° and the blind was positioned closer to the outer glazing, the inner glazing surface temperature from the closest thermocouple (TC 14) above the fire room exceeded 600°C, the glass breakage temperature threshold. Overall, the Venetian blind position and slat opening angle influenced the spread of fire. Venetian blind combustibility and flammability were not considered and therefore recommended for future studies. Practical Application: Our manuscript helps to develop new thinking on mitigation of fire risks in buildings for architects, engineers and designers when incorporating Venetian blinds in Double Skin Façades (DSFs).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244221129763","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Double skin façades (DSFs), offer great views, architectural aesthetics, and energy savings. Yet, in a fire event the glass façade breaks leading to risks to human life and firefighting difficulties. Shading devices incorporated to prevent unfavourable heat gains to reduce cooling load though offer energy savings potentially present other challenges in firefighting and occupants’ evacuation. In this study, Fire Dynamic Simulator (FDS) was used to numerically investigate the spread of a 5 MW HRR polyurethane GM27 fire in a multi-storey double skin façade building with Venetian blinds placed in its cavity. The blinds were positioned 0.4 m away from the internal glazing, middle of the cavity and 0.4 m away from the external glazing respectively. In each blind position the slat angle was opened at 0°, 45°, 90° and 135° respectively. The results show peak inner glazing surface temperature ranged between 283°C to 840°C depending on the thermocouple position, the Venetian blind position and slat opening angle. Without Venetian blinds, peak inner glazing surface temperatures ranged between 468°C to 614°C. In all cases except when the slat angle was 0° and the blind was positioned closer to the outer glazing, the inner glazing surface temperature from the closest thermocouple (TC 14) above the fire room exceeded 600°C, the glass breakage temperature threshold. Overall, the Venetian blind position and slat opening angle influenced the spread of fire. Venetian blind combustibility and flammability were not considered and therefore recommended for future studies. Practical Application: Our manuscript helps to develop new thinking on mitigation of fire risks in buildings for architects, engineers and designers when incorporating Venetian blinds in Double Skin Façades (DSFs).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.