{"title":"Families of diffeomorphisms and concordances detected by trivalent graphs","authors":"Boris Botvinnik, Tadayuki Watanabe","doi":"10.1112/topo.12283","DOIUrl":null,"url":null,"abstract":"<p>We study families of diffeomorphisms detected by trivalent graphs via the Kontsevich classes. We specify some recent results and constructions of the second named author to show that those non-trivial elements in homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mi>∂</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\partial }(D^d))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> are lifted to homotopy groups of the moduli space of <math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-cobordisms <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mo>⊔</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>×</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\sqcup }(D^d\\times I))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math>. As a geometrical application, we show that those elements in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mi>∂</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\partial }(D^d))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> for <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$d\\geqslant 4$</annotation>\n </semantics></math> are also lifted to the rational homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>M</mi>\n <mi>∂</mi>\n <mi>psc</mi>\n </msubsup>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(\\mathcal {M}^\\mathsf {psc}_{\\partial }(D^d)_{h_0})\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> of the moduli space of positive scalar curvature metrics. Moreover, we show that the same elements come from the homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>M</mi>\n <mo>⊔</mo>\n <mi>psc</mi>\n </msubsup>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>×</mo>\n <mi>I</mi>\n <mo>;</mo>\n <msub>\n <mi>g</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(\\mathcal {M}^\\mathsf {psc}_{\\sqcup } (D^d\\times I; g_0)_{h_0})\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> of moduli space of concordances of positive scalar curvature metrics on <math>\n <semantics>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <annotation>$D^d$</annotation>\n </semantics></math> with fixed-round metric <math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n <annotation>$h_0$</annotation>\n </semantics></math> on the boundary <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$S^{d-1}$</annotation>\n </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"207-233"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12283","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We study families of diffeomorphisms detected by trivalent graphs via the Kontsevich classes. We specify some recent results and constructions of the second named author to show that those non-trivial elements in homotopy groups are lifted to homotopy groups of the moduli space of -cobordisms . As a geometrical application, we show that those elements in for are also lifted to the rational homotopy groups of the moduli space of positive scalar curvature metrics. Moreover, we show that the same elements come from the homotopy groups of moduli space of concordances of positive scalar curvature metrics on with fixed-round metric on the boundary .
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.