Families of diffeomorphisms and concordances detected by trivalent graphs

Pub Date : 2023-02-14 DOI:10.1112/topo.12283
Boris Botvinnik, Tadayuki Watanabe
{"title":"Families of diffeomorphisms and concordances detected by trivalent graphs","authors":"Boris Botvinnik,&nbsp;Tadayuki Watanabe","doi":"10.1112/topo.12283","DOIUrl":null,"url":null,"abstract":"<p>We study families of diffeomorphisms detected by trivalent graphs via the Kontsevich classes. We specify some recent results and constructions of the second named author to show that those non-trivial elements in homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mi>∂</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\partial }(D^d))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> are lifted to homotopy groups of the moduli space of <math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-cobordisms <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mo>⊔</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>×</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\sqcup }(D^d\\times I))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math>. As a geometrical application, we show that those elements in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <msub>\n <mi>Diff</mi>\n <mi>∂</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(B\\mathrm{Diff}_{\\partial }(D^d))\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> for <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$d\\geqslant 4$</annotation>\n </semantics></math> are also lifted to the rational homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>M</mi>\n <mi>∂</mi>\n <mi>psc</mi>\n </msubsup>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(\\mathcal {M}^\\mathsf {psc}_{\\partial }(D^d)_{h_0})\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> of the moduli space of positive scalar curvature metrics. Moreover, we show that the same elements come from the homotopy groups <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>M</mi>\n <mo>⊔</mo>\n <mi>psc</mi>\n </msubsup>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <mo>×</mo>\n <mi>I</mi>\n <mo>;</mo>\n <msub>\n <mi>g</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⊗</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$\\pi _*(\\mathcal {M}^\\mathsf {psc}_{\\sqcup } (D^d\\times I; g_0)_{h_0})\\otimes {\\mathbb {Q}}$</annotation>\n </semantics></math> of moduli space of concordances of positive scalar curvature metrics on <math>\n <semantics>\n <msup>\n <mi>D</mi>\n <mi>d</mi>\n </msup>\n <annotation>$D^d$</annotation>\n </semantics></math> with fixed-round metric <math>\n <semantics>\n <msub>\n <mi>h</mi>\n <mn>0</mn>\n </msub>\n <annotation>$h_0$</annotation>\n </semantics></math> on the boundary <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mrow>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$S^{d-1}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study families of diffeomorphisms detected by trivalent graphs via the Kontsevich classes. We specify some recent results and constructions of the second named author to show that those non-trivial elements in homotopy groups π ( B Diff ( D d ) ) Q $\pi _*(B\mathrm{Diff}_{\partial }(D^d))\otimes {\mathbb {Q}}$ are lifted to homotopy groups of the moduli space of h $h$ -cobordisms π ( B Diff ( D d × I ) ) Q $\pi _*(B\mathrm{Diff}_{\sqcup }(D^d\times I))\otimes {\mathbb {Q}}$ . As a geometrical application, we show that those elements in π ( B Diff ( D d ) ) Q $\pi _*(B\mathrm{Diff}_{\partial }(D^d))\otimes {\mathbb {Q}}$ for d 4 $d\geqslant 4$ are also lifted to the rational homotopy groups π ( M psc ( D d ) h 0 ) Q $\pi _*(\mathcal {M}^\mathsf {psc}_{\partial }(D^d)_{h_0})\otimes {\mathbb {Q}}$ of the moduli space of positive scalar curvature metrics. Moreover, we show that the same elements come from the homotopy groups π ( M psc ( D d × I ; g 0 ) h 0 ) Q $\pi _*(\mathcal {M}^\mathsf {psc}_{\sqcup } (D^d\times I; g_0)_{h_0})\otimes {\mathbb {Q}}$ of moduli space of concordances of positive scalar curvature metrics on D d $D^d$ with fixed-round metric h 0 $h_0$ on the boundary S d 1 $S^{d-1}$ .

分享
查看原文
三价图检测的微分同胚族和调和族
我们通过Kontsevich类研究了三价图检测到的微分同胚族。我们指定了第二位作者最近的一些结果和构造,证明了同伦群π*(BDiffõ(Dd))⊗Q$\pi_*(B\mathrm{Diff}_{\partial}(D^D))\otimes{\mathbb{Q}}$被提升到h$h$的模空间π*(BDiff⊔(Dd×I))⊗Q$\pi_*(B\mathrm{Diff}_{\sqcup}(D^D\times I))\otimes{\mathbb{Q}}$。作为几何应用,我们证明了π*(BDiffõ(Dd))⊗Q$\pi_*(B\mathrm{Diff}_D⩾4$D\geqslant 4$的{\partial}(D^D))\otimes{\mathbb{Q}}$也被提升到有理同伦群π*(Mõpsc(Dd)h0)⊗Q$\pi_*(\mathcal{M}^\mathsf{psc}_{\partial}(D^D)_{h_0})\otimes{\mathbb{Q}}$。此外,我们还证明了相同的元素来自同伦群π*(M⊔psc(Dd×I;g0)h0)⊗Q$\pi_*(\mathcal{M}^\mathsf{psc}_Dd$D^D$上的正标量曲率度量与边界Sd−1$S^{D-1}$上的固定圆度量h0$h_0$的一致性的模空间的{\sqcup}(D^D\times I;g_0)_{h_0})\otimes{\mathbb{Q}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信