{"title":"Single-filament-wide tensile-testing specimens reveal material-independent fibre-induced anisotropy for fibre-reinforced material extrusion additive manufacturing","authors":"Jiongyi Yan, E. Demirci, A. Gleadall","doi":"10.1108/rpj-09-2022-0301","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing approach.\n\n\nDesign/methodology/approach\nIn this study, recently validated single-filament-wide tensile-testing specimens were used for four polymers with and without short-fibre reinforcement. Critically, this specimen construct facilitates filament orientation control, for representative longitudinal and transverse composite directions, and enables measurement of interlayer bonded area, which is impossible with “slicing” software but essential in effective property measurement. Tensile properties were studied along the direction of extruded filaments (F) and normal to the interlayer bond (Z) both experimentally and theoretically via the Kelly–Tyson model, bridging model and Halpin–Tsai model.\n\n\nFindings\nEven though the four matrix-material properties varied hugely (1,440% difference in ductility), consistent material-independent trends were identified when adding fibres: ductility reduced in both F- and Z-directions; stiffness and strength increased in F but decreased or remained similar in Z; Z:F strength anisotropy and stiffness anisotropy ratios increased. Z:F strain-at-break anisotropy ratio decreased; stiffness and strain-at-break anisotropy were most affected by changes to F properties, whereas strength anisotropy was most affected by changes to Z properties.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this is the first study to assess interlayer bond strength of composite materials based on measured interlayer bond areas, and consistent fibre-induced properties and anisotropy were found. The results demonstrate the critical influence of mesostructure and microstructure for three-dimensional printed composites. The authors encourage future studies to use specimens with a similar level of control to eliminate structural defects (inter-filament voids and non-uniform filament orientation).\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-09-2022-0301","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
This study/paper aims to develop fundamental understanding of mechanical properties for multiple fibre-reinforced materials by using a single-filament-wide tensile-testing approach.
Design/methodology/approach
In this study, recently validated single-filament-wide tensile-testing specimens were used for four polymers with and without short-fibre reinforcement. Critically, this specimen construct facilitates filament orientation control, for representative longitudinal and transverse composite directions, and enables measurement of interlayer bonded area, which is impossible with “slicing” software but essential in effective property measurement. Tensile properties were studied along the direction of extruded filaments (F) and normal to the interlayer bond (Z) both experimentally and theoretically via the Kelly–Tyson model, bridging model and Halpin–Tsai model.
Findings
Even though the four matrix-material properties varied hugely (1,440% difference in ductility), consistent material-independent trends were identified when adding fibres: ductility reduced in both F- and Z-directions; stiffness and strength increased in F but decreased or remained similar in Z; Z:F strength anisotropy and stiffness anisotropy ratios increased. Z:F strain-at-break anisotropy ratio decreased; stiffness and strain-at-break anisotropy were most affected by changes to F properties, whereas strength anisotropy was most affected by changes to Z properties.
Originality/value
To the best of the authors’ knowledge, this is the first study to assess interlayer bond strength of composite materials based on measured interlayer bond areas, and consistent fibre-induced properties and anisotropy were found. The results demonstrate the critical influence of mesostructure and microstructure for three-dimensional printed composites. The authors encourage future studies to use specimens with a similar level of control to eliminate structural defects (inter-filament voids and non-uniform filament orientation).
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation