Evaluation of thermal comfort in mixed-mode buildings in temperate oceanic climates using American Society of Heating, Refrigeration, and Air Conditioning Engineers Comfort Database II
{"title":"Evaluation of thermal comfort in mixed-mode buildings in temperate oceanic climates using American Society of Heating, Refrigeration, and Air Conditioning Engineers Comfort Database II","authors":"Mohamad Abdul Gaffoor, M. Eftekhari, Xi Luo","doi":"10.1177/01436244211044670","DOIUrl":null,"url":null,"abstract":"A comprehensive understanding of occupant comfort in mixed-mode (MM) buildings is crucial for the design of MM buildings which are being proposed as a low-energy solution to combat the global warming without compromising comfort. Current comfort standards are mainly for naturally ventilated (NV) or air-conditioned (AC) buildings, and there is a significant gap in standards for MM buildings. With comfort databases playing a major role in the development of thermal comfort models, the recently published ASHRAE Global Thermal Comfort Database II is utilised, in this research, to investigate the thermal sensation and occupant’s behavioural adaptations in MM buildings in temperate oceanic climates and to develop an adaptive thermal comfort model based on the outdoor environmental conditions. The Fanger's PMV model was found to underpredict the actual thermal sensation of the occupants while the occupant adaptivity was found to be lower than that predicted by the adaptive models of Standard 55 and EN15251/EN 16798-1. Furthermore, based on the results of this study and the various impediments faced, recommendations are proposed for future comfort surveys so that more detailed and conclusive studies can be conducted for wider applications using open-source thermal comfort databases. \n Practical application\n Good understanding of occupant comfort is necessary to reduce building energy consumption without compromising comfort. This article explores the use of ASHRAE Comfort Database II for determining occupant comfort in MM buildings in temperate oceanic climates and the limitations faced therein. A practical and publicly accessible database developed based on the recommendations from this study will improve thermal comfort models and enable better prediction of occupant comfort while improving energy efficiency substantially.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244211044670","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
A comprehensive understanding of occupant comfort in mixed-mode (MM) buildings is crucial for the design of MM buildings which are being proposed as a low-energy solution to combat the global warming without compromising comfort. Current comfort standards are mainly for naturally ventilated (NV) or air-conditioned (AC) buildings, and there is a significant gap in standards for MM buildings. With comfort databases playing a major role in the development of thermal comfort models, the recently published ASHRAE Global Thermal Comfort Database II is utilised, in this research, to investigate the thermal sensation and occupant’s behavioural adaptations in MM buildings in temperate oceanic climates and to develop an adaptive thermal comfort model based on the outdoor environmental conditions. The Fanger's PMV model was found to underpredict the actual thermal sensation of the occupants while the occupant adaptivity was found to be lower than that predicted by the adaptive models of Standard 55 and EN15251/EN 16798-1. Furthermore, based on the results of this study and the various impediments faced, recommendations are proposed for future comfort surveys so that more detailed and conclusive studies can be conducted for wider applications using open-source thermal comfort databases.
Practical application
Good understanding of occupant comfort is necessary to reduce building energy consumption without compromising comfort. This article explores the use of ASHRAE Comfort Database II for determining occupant comfort in MM buildings in temperate oceanic climates and the limitations faced therein. A practical and publicly accessible database developed based on the recommendations from this study will improve thermal comfort models and enable better prediction of occupant comfort while improving energy efficiency substantially.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.