{"title":"Integration of chemical engineering skills in the curriculum of a master course in industrial engineering","authors":"Lucía Gómez-Coma, Guillermo Díaz-Sainz, Marcos Fallanza, Alfredo Ortiz, Inmaculada Ortiz","doi":"10.1016/j.ece.2023.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Promoting new teaching methodologies is essential to improve the participation, motivation, interest, and results of students in all educational stages. In this sense, flipped classroom and problem-based learning have emerged in the last years as fascinating options to be implemented in high education levels thanks to the students’ maturity and previously acquired background. Working with motivating case studies based on real processes with their restrictions appears as an opportunity to bring future professionals closer to the industrial problems; this will capacitate engineers to solve and understand complex procedures getting tangible results. In this context, the main goal of this work is to combine flipped classroom and problem-based learning methodologies to gain the interest of students of a Master course in Industrial Engineering in the subject of Chemical Processes using real data of local companies. A survey, designed by the academics involved, will help collecting the opinion of students as well as the acquired skills in the frame of the specific subject. Results demonstrated the satisfaction of the students with the course, highlighting mainly the acquisition or improvement of self-learning skills (survey 4.0/5.0), capacity for organization and planning (survey 4.0/5.0), analytical ability (survey 4.2/5.0), and teamwork (survey 4.3/5.0). In addition, the grades accomplished during the year of implementation show that although the success rate is quite similar to preceding years, the marks achieved are considerably higher.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"45 ","pages":"Pages 68-79"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772823000398","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Promoting new teaching methodologies is essential to improve the participation, motivation, interest, and results of students in all educational stages. In this sense, flipped classroom and problem-based learning have emerged in the last years as fascinating options to be implemented in high education levels thanks to the students’ maturity and previously acquired background. Working with motivating case studies based on real processes with their restrictions appears as an opportunity to bring future professionals closer to the industrial problems; this will capacitate engineers to solve and understand complex procedures getting tangible results. In this context, the main goal of this work is to combine flipped classroom and problem-based learning methodologies to gain the interest of students of a Master course in Industrial Engineering in the subject of Chemical Processes using real data of local companies. A survey, designed by the academics involved, will help collecting the opinion of students as well as the acquired skills in the frame of the specific subject. Results demonstrated the satisfaction of the students with the course, highlighting mainly the acquisition or improvement of self-learning skills (survey 4.0/5.0), capacity for organization and planning (survey 4.0/5.0), analytical ability (survey 4.2/5.0), and teamwork (survey 4.3/5.0). In addition, the grades accomplished during the year of implementation show that although the success rate is quite similar to preceding years, the marks achieved are considerably higher.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning