{"title":"SENSITIVITY ANALYSIS AND IMPACT OF AN IMPERFECT VACCINE OF TWO STRAINS OF HEPATITIS B VIRUS INFECTION","authors":"J. Nayeem, C. Podder, M. Salek","doi":"10.1142/s0218339023500158","DOIUrl":null,"url":null,"abstract":"A mathematical model considering two strains of hepatitis B virus (HBV) chronic carriers, to assess the impact of dose-structured imperfect vaccine, in a population, is designed and analyzed. The model is shown to have a locally and globally asymptotically stable disease-free equilibrium (DFE) whenever its associated reproduction number is numerically less than unity. Numerical analysis of the model shows that with the expected [Formula: see text] minimum efficacy of the first vaccine dose, vaccinating [Formula: see text] of the susceptible population with the first vaccine dose will be sufficient to effectively control the spread of hepatitis B infection. Such effective control can also be achieved if [Formula: see text] of the first vaccine dose recipients take the second dose. Threshold analysis reveals that an imperfect HBV vaccine should have positive or negative population-level effect. Latin hypercube sampling–PRCC analysis illustrates that disease transmission rate, birth rate, natural death rate and proportion of children born with maternal immunity are most influential parameters in the disease dynamics. In this paper, the sensitivity analysis based on mathematical and in addition statistical techniques have been performed to determine the significance of the model parameters. It is observed that a number of the parameters play an important role to determine the magnitude of the basic reproduction number. Sensitivity analysis is achieved to determine model parameters’ importance in disease dynamics. It is observed that the reproduction number is the most responsive quantity to the potent transmission rate of HBV and in addition also vital to control the spread of the disease.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500158","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
A mathematical model considering two strains of hepatitis B virus (HBV) chronic carriers, to assess the impact of dose-structured imperfect vaccine, in a population, is designed and analyzed. The model is shown to have a locally and globally asymptotically stable disease-free equilibrium (DFE) whenever its associated reproduction number is numerically less than unity. Numerical analysis of the model shows that with the expected [Formula: see text] minimum efficacy of the first vaccine dose, vaccinating [Formula: see text] of the susceptible population with the first vaccine dose will be sufficient to effectively control the spread of hepatitis B infection. Such effective control can also be achieved if [Formula: see text] of the first vaccine dose recipients take the second dose. Threshold analysis reveals that an imperfect HBV vaccine should have positive or negative population-level effect. Latin hypercube sampling–PRCC analysis illustrates that disease transmission rate, birth rate, natural death rate and proportion of children born with maternal immunity are most influential parameters in the disease dynamics. In this paper, the sensitivity analysis based on mathematical and in addition statistical techniques have been performed to determine the significance of the model parameters. It is observed that a number of the parameters play an important role to determine the magnitude of the basic reproduction number. Sensitivity analysis is achieved to determine model parameters’ importance in disease dynamics. It is observed that the reproduction number is the most responsive quantity to the potent transmission rate of HBV and in addition also vital to control the spread of the disease.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.