{"title":"Evaluating the potential of remote sensing imagery in mapping ground-level fine particulate matter (PM2.5) for the Vaal Triangle Priority Area","authors":"Luckson Muyemeki, R. Burger, S. Piketh","doi":"10.17159/caj/2020/30/1.8066","DOIUrl":null,"url":null,"abstract":"The quality of air breathed in South Africa is of great concern, especially in industrialised regions where PM2.5 concentrations are high. Long term exposure to PM2.5 is associated with serious adverse health impacts. Traditionally, PM2.5 is monitored by a network of ground-based instruments. However, the coverage of monitoring networks in South Africa is not dense enough to fully capture the spatial variability of PM2.5 concentrations. This study explored whether satellite remote sensing could offer a viable alternative to ground-based monitoring. Using an eight-year record (2009 to 2016) of satellite retrievals (MODIS, MISR and SeaWIFS) for PM2.5 concentrations, spatial variations and temporal trends for PM2.5 are evaluated for the Vaal Triangle Airshed Priority Area (VTAPA). Results are compared to corresponding measurements from the VTAPA surface monitoring stations. High PM2.5 concentrations were clustered around the centre and towards the south-west of the VTAPA over the highly industrialised cities of Vanderbijlpark and Sasolburg. Satellite retrievals tended to overestimate PM2.5 concentrations. Overall, there was a poor spatial agreement between satellite-retrieved PM2.5 estimates and ground-level PM2.5 measurements. Root mean square error values ranged from 6 to 11 µg/m3 and from -0.89 to 0.32 for the correlation coefficient. For satellite remote sensing to be effectively exploited for air quality assessments in the VTAPA and elsewhere, further research to improve the precision and accuracy of satellite-retrieved PM2.5 is required.","PeriodicalId":37511,"journal":{"name":"Clean Air Journal","volume":"30 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Air Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/caj/2020/30/1.8066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4
Abstract
The quality of air breathed in South Africa is of great concern, especially in industrialised regions where PM2.5 concentrations are high. Long term exposure to PM2.5 is associated with serious adverse health impacts. Traditionally, PM2.5 is monitored by a network of ground-based instruments. However, the coverage of monitoring networks in South Africa is not dense enough to fully capture the spatial variability of PM2.5 concentrations. This study explored whether satellite remote sensing could offer a viable alternative to ground-based monitoring. Using an eight-year record (2009 to 2016) of satellite retrievals (MODIS, MISR and SeaWIFS) for PM2.5 concentrations, spatial variations and temporal trends for PM2.5 are evaluated for the Vaal Triangle Airshed Priority Area (VTAPA). Results are compared to corresponding measurements from the VTAPA surface monitoring stations. High PM2.5 concentrations were clustered around the centre and towards the south-west of the VTAPA over the highly industrialised cities of Vanderbijlpark and Sasolburg. Satellite retrievals tended to overestimate PM2.5 concentrations. Overall, there was a poor spatial agreement between satellite-retrieved PM2.5 estimates and ground-level PM2.5 measurements. Root mean square error values ranged from 6 to 11 µg/m3 and from -0.89 to 0.32 for the correlation coefficient. For satellite remote sensing to be effectively exploited for air quality assessments in the VTAPA and elsewhere, further research to improve the precision and accuracy of satellite-retrieved PM2.5 is required.
Clean Air JournalEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
8 weeks
期刊介绍:
Clean Air Journal is the official publication of the National Association for Clean Air, a not-for-profit organisation. Clean Air Journal is a peer-reviewed journal for those interested in air quality, air quality management, and the impacts of air pollution relevant to Africa. The focus of the journal includes, but is not limited to: Impacts of human activities and natural processes on ambient air quality Air quality and climate change linkages Air pollution mitigation technologies and applications Matters of public policy regarding air quality management Measurement and analysis of ambient and indoor air pollution Atmospheric modelling application and development Atmospheric emissions Other topics on atmospheric physics or chemistry with particular relevance to Africa The scope of the journal is broad, but the core theme of the journal is air quality in Africa.