Trajectory risk cognition of ship collision accident based on fusion of multi-model spatial data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Liu, Shuo Wang, Z. Lei, Jinfeng Zhang, Xiaocai Zhang
{"title":"Trajectory risk cognition of ship collision accident based on fusion of multi-model spatial data","authors":"Tao Liu, Shuo Wang, Z. Lei, Jinfeng Zhang, Xiaocai Zhang","doi":"10.1017/S0373463322000066","DOIUrl":null,"url":null,"abstract":"Abstract When conducting accident analysis, the assessment of risk is one of the important links. Moreover, with regards to crew training, risk cognition is also an important training subject. However, most of the existing researches only rely on a single or a few data sources. It is necessary to fuse the collected multi-source data to obtain a more comprehensive risk evaluation model. There are few studies on the three-dimensional (3D) multi-modal data-fusion-based trajectory risk cognition. In this paper, a fuzzy logic-based trajectory risk cognition method is proposed based on multi-model spatial data fusion and accident data mining. First, the necessity of multi-model spatial data fusion is analysed and a data-fusion-based scene map is constructed. Second, a risk cognition model fused by multiple factors, multi-dimensional spatial calculations as well as data mining results is proposed, including a novel ship boundary calculation approach and newly constructed factors. Finally, a radar chart is used to illustrate the risk, and a risk cognition system is developed. Experiment results confirm the effectiveness of the method. It can be applied to train human operators of unmanned ship systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract When conducting accident analysis, the assessment of risk is one of the important links. Moreover, with regards to crew training, risk cognition is also an important training subject. However, most of the existing researches only rely on a single or a few data sources. It is necessary to fuse the collected multi-source data to obtain a more comprehensive risk evaluation model. There are few studies on the three-dimensional (3D) multi-modal data-fusion-based trajectory risk cognition. In this paper, a fuzzy logic-based trajectory risk cognition method is proposed based on multi-model spatial data fusion and accident data mining. First, the necessity of multi-model spatial data fusion is analysed and a data-fusion-based scene map is constructed. Second, a risk cognition model fused by multiple factors, multi-dimensional spatial calculations as well as data mining results is proposed, including a novel ship boundary calculation approach and newly constructed factors. Finally, a radar chart is used to illustrate the risk, and a risk cognition system is developed. Experiment results confirm the effectiveness of the method. It can be applied to train human operators of unmanned ship systems.
基于多模型空间数据融合的船舶碰撞事故轨迹风险认知
摘要在进行事故分析时,风险评估是重要环节之一。此外,在船员培训方面,风险认知也是一个重要的培训科目。然而,现有的研究大多只依赖于单一或少数的数据来源。有必要将收集到的多源数据进行融合,以获得更全面的风险评估模型。基于轨迹风险认知的三维(3D)多模态数据融合研究较少。本文基于多模型空间数据融合和事故数据挖掘,提出了一种基于模糊逻辑的轨迹风险认知方法。首先,分析了多模型空间数据融合的必要性,构建了基于数据融合的场景图。其次,提出了一个融合多因素、多维空间计算和数据挖掘结果的风险认知模型,包括一种新的船舶边界计算方法和新构建的因素。最后,利用雷达图对风险进行了说明,并开发了风险认知系统。实验结果验证了该方法的有效性。它可以用于培训无人驾驶船舶系统的操作员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信