D. S. Marques, R. White, Sajjad Al-Khabaz, Mustafa Al-Talaq, Jabr Al-Buainain
{"title":"Benchmarking of Pulsed Field Gradient Nuclear Magnetic Resonance as a Demulsifier Selection Tool with Arabian Light Crude Oils","authors":"D. S. Marques, R. White, Sajjad Al-Khabaz, Mustafa Al-Talaq, Jabr Al-Buainain","doi":"10.2118/203820-pa","DOIUrl":null,"url":null,"abstract":"\n The use of chemical demulsifiers in the treatment of crude oil emulsions is an essential step in processing facilities worldwide. Each production facility requires specific demulsifier reformulations as the crude characteristics change. The assessment of candidate demulsifiers before online field trials is currently done with bottle tests. Such tests are manual, based on water dropout visually measured by operators. The development of a method that can automatically determine the speed and amount of water dropout without the laborious need to manually record water separation would significantly decrease human error. Pulsed field gradient nuclear magnetic resonance (PFG-NMR) is used as a classification tool to qualitatively rank the efficiency of different demulsifiers in breaking Arabian Light emulsions. This imaging method can evaluate demulsifier action based on the emulsion characteristics; for example, rate of sedimentation and coalescence and formation of a dense packed zone (rag layer). The results are validated against field trials performed in gas-oil separation plants (GOSPs) at two Saudi Arabian facilities. There was good agreement between the PFG-NMR method and field trials. The results were found to correspond to the water dropout in the first stage of crude oil treatment in processing plants (production traps).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2118/203820-pa","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/203820-pa","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The use of chemical demulsifiers in the treatment of crude oil emulsions is an essential step in processing facilities worldwide. Each production facility requires specific demulsifier reformulations as the crude characteristics change. The assessment of candidate demulsifiers before online field trials is currently done with bottle tests. Such tests are manual, based on water dropout visually measured by operators. The development of a method that can automatically determine the speed and amount of water dropout without the laborious need to manually record water separation would significantly decrease human error. Pulsed field gradient nuclear magnetic resonance (PFG-NMR) is used as a classification tool to qualitatively rank the efficiency of different demulsifiers in breaking Arabian Light emulsions. This imaging method can evaluate demulsifier action based on the emulsion characteristics; for example, rate of sedimentation and coalescence and formation of a dense packed zone (rag layer). The results are validated against field trials performed in gas-oil separation plants (GOSPs) at two Saudi Arabian facilities. There was good agreement between the PFG-NMR method and field trials. The results were found to correspond to the water dropout in the first stage of crude oil treatment in processing plants (production traps).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.