{"title":"Dynamics of stochastic FitzHugh–Nagumo system on unbounded domains with memory","authors":"Bui Kim My, N. Toan","doi":"10.1080/14689367.2023.2194522","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the non-autonomous stochastic FitzHugh–Nagumo system with hereditary memory and a very large class of nonlinearities, which has no restriction on the upper growth of the nonlinearity. The existence of a random pullback attractor is established for this system in all N-dimensional space.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"453 - 476"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2194522","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the non-autonomous stochastic FitzHugh–Nagumo system with hereditary memory and a very large class of nonlinearities, which has no restriction on the upper growth of the nonlinearity. The existence of a random pullback attractor is established for this system in all N-dimensional space.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences