A concise proof of Benford’s law

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
{"title":"A concise proof of Benford’s law","authors":"","doi":"10.1016/j.fmre.2023.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a concise proof of the famous Benford’s law when the distribution has a Riemann integrable probability density function and provides a criterion to judge whether a distribution obeys the law. The proof is intuitive and elegant, accessible to anyone with basic knowledge of calculus, revealing that the law originates from the basic property of human number system. The criterion can bring great convenience to the field of fraud detection.</p></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 4","pages":"Pages 841-844"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667325823000043/pdfft?md5=5e07d0c1d75831e9dc52d7a811dc3681&pid=1-s2.0-S2667325823000043-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823000043","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a concise proof of the famous Benford’s law when the distribution has a Riemann integrable probability density function and provides a criterion to judge whether a distribution obeys the law. The proof is intuitive and elegant, accessible to anyone with basic knowledge of calculus, revealing that the law originates from the basic property of human number system. The criterion can bring great convenience to the field of fraud detection.

Abstract Image

Benford定律的简明证明
本文简明扼要地证明了当分布具有黎曼可积分概率密度函数时的著名本福德定律,并提供了判断分布是否服从该定律的标准。证明直观而优雅,任何具有微积分基础知识的人都能理解,揭示了该定律源于人类数制的基本属性。该标准可为欺诈检测领域带来极大的便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信