Zhe Ren, Sara G. Baer, Loretta C. Johnson, Matthew B. Galliart, Laurel R. Wilson, David J. Gibson
{"title":"The role of dominant prairie species ecotypes on plant diversity patterns of restored grasslands across a rainfall gradient in the US Great Plains","authors":"Zhe Ren, Sara G. Baer, Loretta C. Johnson, Matthew B. Galliart, Laurel R. Wilson, David J. Gibson","doi":"10.1111/avsc.12725","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Questions</h3>\n \n <p>A robust ecosystem requires a functionally heterogeneous community of organisms with ecological traits that permit broad resource partitioning. Understanding community diversity patterns can help investigate drivers of community assembly and assess restoration success. Do biodiversity patterns differ among grassland communities sown with different ecotypes of dominant species during restoration along a rainfall gradient in the tallgrass prairie of the central US Great Plains?</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Four field sites across a rainfall gradient within the North American Great Plains: Colby, Kansas (39°23′17.8″N, 101°04′57.4″W), Hays, Kansas (38°51′13.2″N, 99°19′08.6″W), Manhattan, Kansas (39°08′22.3″N, 96°38′23.3″W), and Carbondale, Illinois (IL, 37°41′47.0″N, 89°14′19.2″W).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We applied linear mixed models to assess the effect of dominant species ecotype, year, and location on grassland taxonomic, phylogenetic, and functional diversity.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The non-local grass ecotype (compared to the local ecotype) promoted species richness. In contrast, the effect of the dominant species ecotype on phylogenetic or functional diversity was site-specific over the 10-year restoration. Richness decreased across the rainfall gradient from dry to moist sites, and the wettest site had the highest phylogenetic and functional diversity.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our results suggest that abiotic filtering by rainfall is a key assembly mechanism that could predict grassland changes in biodiversity in the early restoration phases. Given the community response across the tallgrass prairie, restoration practitioners should consider the impact of regional sources of dominant species used in restoration when biodiversity is a restoration goal. It is recommended for future grassland restoration to detect gaps and limitations in evolutionary and trait structure that will reveal which diversity components to evaluate.</p>\n </section>\n </div>","PeriodicalId":55494,"journal":{"name":"Applied Vegetation Science","volume":"26 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/avsc.12725","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/avsc.12725","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Questions
A robust ecosystem requires a functionally heterogeneous community of organisms with ecological traits that permit broad resource partitioning. Understanding community diversity patterns can help investigate drivers of community assembly and assess restoration success. Do biodiversity patterns differ among grassland communities sown with different ecotypes of dominant species during restoration along a rainfall gradient in the tallgrass prairie of the central US Great Plains?
Location
Four field sites across a rainfall gradient within the North American Great Plains: Colby, Kansas (39°23′17.8″N, 101°04′57.4″W), Hays, Kansas (38°51′13.2″N, 99°19′08.6″W), Manhattan, Kansas (39°08′22.3″N, 96°38′23.3″W), and Carbondale, Illinois (IL, 37°41′47.0″N, 89°14′19.2″W).
Methods
We applied linear mixed models to assess the effect of dominant species ecotype, year, and location on grassland taxonomic, phylogenetic, and functional diversity.
Results
The non-local grass ecotype (compared to the local ecotype) promoted species richness. In contrast, the effect of the dominant species ecotype on phylogenetic or functional diversity was site-specific over the 10-year restoration. Richness decreased across the rainfall gradient from dry to moist sites, and the wettest site had the highest phylogenetic and functional diversity.
Conclusions
Our results suggest that abiotic filtering by rainfall is a key assembly mechanism that could predict grassland changes in biodiversity in the early restoration phases. Given the community response across the tallgrass prairie, restoration practitioners should consider the impact of regional sources of dominant species used in restoration when biodiversity is a restoration goal. It is recommended for future grassland restoration to detect gaps and limitations in evolutionary and trait structure that will reveal which diversity components to evaluate.
期刊介绍:
Applied Vegetation Science focuses on community-level topics relevant to human interaction with vegetation, including global change, nature conservation, nature management, restoration of plant communities and of natural habitats, and the planning of semi-natural and urban landscapes. Vegetation survey, modelling and remote-sensing applications are welcome. Papers on vegetation science which do not fit to this scope (do not have an applied aspect and are not vegetation survey) should be directed to our associate journal, the Journal of Vegetation Science. Both journals publish papers on the ecology of a single species only if it plays a key role in structuring plant communities.