Parameter Optimization and Precision Control of Water-Soluble Support Cores for Hollow Composite Castings Fabricated by Slurry Microextrusion Direct Forming Method.
Jiefei Huang, Fuchu Liu, Yingpeng Mu, Chi Zhang, Xin Liu, Guangchao Han, Zitian Fan
{"title":"Parameter Optimization and Precision Control of Water-Soluble Support Cores for Hollow Composite Castings Fabricated by Slurry Microextrusion Direct Forming Method.","authors":"Jiefei Huang, Fuchu Liu, Yingpeng Mu, Chi Zhang, Xin Liu, Guangchao Han, Zitian Fan","doi":"10.1089/3dp.2023.0136","DOIUrl":null,"url":null,"abstract":"<p><p>The optimization of slurry content and forming process parameters has a significant effect in slurry microextrusion direct forming method. In this article, magnesium sulfate monohydrate (MgSO<sub>4</sub>) and polyvinylpyrrolidone (PVP) were used as raw materials to prepare the slurry, and the component ratios of the slurry and the optimization of its forming process were discussed. The optimum slurry content is 64 wt.% by mass of magnesium sulfate monohydrate and 36 wt.% by mass of binder consisting of PVP-EtOH. The process parameters that include printing speed, extrusion pressure, and the ratio of printing layer height to extrusion diameter were selected as influencing factors. The orthogonal experiment results show that a printing speed of 850 mm/min, an extrusion pressure of 250 kPa, and a layer height of 510 μm of the extrusion diameter are the optimized process parameters. Under the optimized printing parameters, the surface roughness of the prepared samples is 23.764 μm, with dimensional deviations of 0.71%, 0.77%, and 2.56% in the X, Y, and Z directions, respectively.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":"1768-1786"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0136","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The optimization of slurry content and forming process parameters has a significant effect in slurry microextrusion direct forming method. In this article, magnesium sulfate monohydrate (MgSO4) and polyvinylpyrrolidone (PVP) were used as raw materials to prepare the slurry, and the component ratios of the slurry and the optimization of its forming process were discussed. The optimum slurry content is 64 wt.% by mass of magnesium sulfate monohydrate and 36 wt.% by mass of binder consisting of PVP-EtOH. The process parameters that include printing speed, extrusion pressure, and the ratio of printing layer height to extrusion diameter were selected as influencing factors. The orthogonal experiment results show that a printing speed of 850 mm/min, an extrusion pressure of 250 kPa, and a layer height of 510 μm of the extrusion diameter are the optimized process parameters. Under the optimized printing parameters, the surface roughness of the prepared samples is 23.764 μm, with dimensional deviations of 0.71%, 0.77%, and 2.56% in the X, Y, and Z directions, respectively.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.