{"title":"An Integrated Approach for Friction and Wear Simulation of Tire Tread Rubber. Part I: Friction Test, Characterization, and Modeling","authors":"Zhao Li, Ziran Li, Yang Wang","doi":"10.2346/TIRE.19.170174","DOIUrl":null,"url":null,"abstract":"\n To simulate tire tread friction and wear, a variety of factors have to be taken into account. Among them, the local nonlinear constitutive equation for friction and wear in the contact interface and the related solving strategies, including the wear increment optimization and worn mesh update, are very critical to the predicting methodology. This two-part contribution addresses an integrated approach for friction and wear simulation of tire tread rubber. In Part I, a modified friction test scheme of rubber wheels with the Laboratory Abrasion and Skid Tester (LAT 100) is proposed, along with numerical verification, which greatly improved the distribution uniformities of the contact pressure and sliding velocity. In order to investigate the friction characteristics of tire tread rubber, various contact conditions were conducted, and then a unified friction model was put forward to describe the nonlinear relationship of rubber friction with contact pressure and sliding velocity. Based on the established frictional contact model, the locked traction and cornering rolling were simulated, and the calculated friction forces and lateral forces agree with the experimental results on the whole.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/TIRE.19.170174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
To simulate tire tread friction and wear, a variety of factors have to be taken into account. Among them, the local nonlinear constitutive equation for friction and wear in the contact interface and the related solving strategies, including the wear increment optimization and worn mesh update, are very critical to the predicting methodology. This two-part contribution addresses an integrated approach for friction and wear simulation of tire tread rubber. In Part I, a modified friction test scheme of rubber wheels with the Laboratory Abrasion and Skid Tester (LAT 100) is proposed, along with numerical verification, which greatly improved the distribution uniformities of the contact pressure and sliding velocity. In order to investigate the friction characteristics of tire tread rubber, various contact conditions were conducted, and then a unified friction model was put forward to describe the nonlinear relationship of rubber friction with contact pressure and sliding velocity. Based on the established frictional contact model, the locked traction and cornering rolling were simulated, and the calculated friction forces and lateral forces agree with the experimental results on the whole.
期刊介绍:
Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.