On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance

Pub Date : 2023-02-06 DOI:10.1112/topo.12281
Arturo Fernández-Pérez, Gilcione Nonato Costa, Rudy Rosas Bazán
{"title":"On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance","authors":"Arturo Fernández-Pérez,&nbsp;Gilcione Nonato Costa,&nbsp;Rudy Rosas Bazán","doi":"10.1112/topo.12281","DOIUrl":null,"url":null,"abstract":"<p>We define the Milnor number of a one-dimensional holomorphic foliation <math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> as the intersection number of two holomorphic sections with respect to a compact connected component <math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> of its singular set. Under certain conditions, we prove that the Milnor number of <math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> on a three-dimensional manifold with respect to <math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> is invariant by <math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>1</mn>\n </msup>\n <annotation>$C^1$</annotation>\n </semantics></math> topological equivalences.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define the Milnor number of a one-dimensional holomorphic foliation F $\mathcal {F}$ as the intersection number of two holomorphic sections with respect to a compact connected component C $C$ of its singular set. Under certain conditions, we prove that the Milnor number of F $\mathcal {F}$ on a three-dimensional manifold with respect to C $C$ is invariant by C 1 $C^1$ topological equivalences.

分享
查看原文
全纯叶的非孤立奇点Milnor数及其拓扑不变性
我们将一维全纯叶理F$\mathcal{F}$的Milnor数定义为两个全纯截面相对于其奇异集的紧连通分量C$C$的交集数。在一定条件下,我们证明了三维流形上F$\mathcal{F}$相对于C$C$的Milnor数通过C1$C^1$拓扑等价是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信