On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance

IF 0.8 2区 数学 Q2 MATHEMATICS
Arturo Fernández-Pérez, Gilcione Nonato Costa, Rudy Rosas Bazán
{"title":"On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance","authors":"Arturo Fernández-Pérez,&nbsp;Gilcione Nonato Costa,&nbsp;Rudy Rosas Bazán","doi":"10.1112/topo.12281","DOIUrl":null,"url":null,"abstract":"<p>We define the Milnor number of a one-dimensional holomorphic foliation <math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> as the intersection number of two holomorphic sections with respect to a compact connected component <math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> of its singular set. Under certain conditions, we prove that the Milnor number of <math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> on a three-dimensional manifold with respect to <math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> is invariant by <math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>1</mn>\n </msup>\n <annotation>$C^1$</annotation>\n </semantics></math> topological equivalences.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"176-191"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12281","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define the Milnor number of a one-dimensional holomorphic foliation F $\mathcal {F}$ as the intersection number of two holomorphic sections with respect to a compact connected component C $C$ of its singular set. Under certain conditions, we prove that the Milnor number of F $\mathcal {F}$ on a three-dimensional manifold with respect to C $C$ is invariant by C 1 $C^1$ topological equivalences.

全纯叶的非孤立奇点Milnor数及其拓扑不变性
我们将一维全纯叶理F$\mathcal{F}$的Milnor数定义为两个全纯截面相对于其奇异集的紧连通分量C$C$的交集数。在一定条件下,我们证明了三维流形上F$\mathcal{F}$相对于C$C$的Milnor数通过C1$C^1$拓扑等价是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信