{"title":"Empirical Best Prediction of Small Area Means Based on a Unit-Level Gamma-Poisson Model","authors":"Emily J. Berg","doi":"10.1093/jssam/smac026","DOIUrl":null,"url":null,"abstract":"\n Existing small area estimation procedures for count data have important limitations. For instance, an M-quantile-based method is known to be less efficient than model-based procedures if the assumptions of the model hold. Also, frequentist inference procedures for Poisson generalized linear mixed models can be computationally intensive or require approximations. Furthermore, area-level models are incapable of incorporating unit-level covariates. We overcome these limitations by developing a small area estimation procedure for a unit-level gamma-Poisson model. The conjugate form of the model permits computationally simple estimation and prediction procedures. We obtain a closed-form expression for the empirical best predictor of the mean as well as a closed-form mean square error estimator. We validate the procedure through simulations. We illustrate the proposed method using a subset of data from the Iowa Seat-Belt Use survey.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smac026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Existing small area estimation procedures for count data have important limitations. For instance, an M-quantile-based method is known to be less efficient than model-based procedures if the assumptions of the model hold. Also, frequentist inference procedures for Poisson generalized linear mixed models can be computationally intensive or require approximations. Furthermore, area-level models are incapable of incorporating unit-level covariates. We overcome these limitations by developing a small area estimation procedure for a unit-level gamma-Poisson model. The conjugate form of the model permits computationally simple estimation and prediction procedures. We obtain a closed-form expression for the empirical best predictor of the mean as well as a closed-form mean square error estimator. We validate the procedure through simulations. We illustrate the proposed method using a subset of data from the Iowa Seat-Belt Use survey.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.