Drought and Socioeconomic Drivers of Crop Diversity in India: A Panel Analysis

IF 1.4 Q3 AGRONOMY
Arup Jana, Aparajita Chattopadhyay
{"title":"Drought and Socioeconomic Drivers of Crop Diversity in India: A Panel Analysis","authors":"Arup Jana,&nbsp;Aparajita Chattopadhyay","doi":"10.1007/s40003-023-00665-8","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the trends in crop diversity in context of changing socioeconomic and climatic factors are essential for implementing sustainable agricultural practices. The Shannon Index was adopted to calculate crop diversity across all districts of India from 2001 to 2021. High-resolution Standardized Precipitation Eevapotranspiration Index (SPEI) data was developed using the Climate Hazards Group InfraRed Precipitation (CHIRPS) and Global Land Evaporation Amsterdam Model's (GLEAM) data to capture climate variability. A panel regression was employed using ordinary least squares, fixed effects, and random effects models. Crop diversity in India experiences an increase of 2.6% between 2001 and 2021. During the study period, India experienced an increase in the proportion of land dedicated to non-food crops, rising from 19.79% to 22.80%. The area allocated to cereal and millet crops experienced a decline, decreasing from 54.51% to 50.61%. SPEI is a significant factor in diversified agriculture, showing a negative association. Higher urbanization, road density, number of markets, the presence of organic carbon in the soil, improved seeds, fertilizers, and credit facilities for farmers reduce crop diversity. Access to irrigation increases the likelihood of practicing in diversified crop. Increasing education level of farmers positively influences the practice of crop diversity in India. Farmers in droughtprone areas of India often adopted diversified cropping practices.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-023-00665-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the trends in crop diversity in context of changing socioeconomic and climatic factors are essential for implementing sustainable agricultural practices. The Shannon Index was adopted to calculate crop diversity across all districts of India from 2001 to 2021. High-resolution Standardized Precipitation Eevapotranspiration Index (SPEI) data was developed using the Climate Hazards Group InfraRed Precipitation (CHIRPS) and Global Land Evaporation Amsterdam Model's (GLEAM) data to capture climate variability. A panel regression was employed using ordinary least squares, fixed effects, and random effects models. Crop diversity in India experiences an increase of 2.6% between 2001 and 2021. During the study period, India experienced an increase in the proportion of land dedicated to non-food crops, rising from 19.79% to 22.80%. The area allocated to cereal and millet crops experienced a decline, decreasing from 54.51% to 50.61%. SPEI is a significant factor in diversified agriculture, showing a negative association. Higher urbanization, road density, number of markets, the presence of organic carbon in the soil, improved seeds, fertilizers, and credit facilities for farmers reduce crop diversity. Access to irrigation increases the likelihood of practicing in diversified crop. Increasing education level of farmers positively influences the practice of crop diversity in India. Farmers in droughtprone areas of India often adopted diversified cropping practices.

干旱和印度作物多样性的社会经济驱动因素:一个小组分析
在不断变化的社会经济和气候因素背景下,了解作物多样性的趋势对于实施可持续农业做法至关重要。香农指数被用来计算2001年至2021年印度所有地区的作物多样性。利用气候灾害组织红外降水(CHIRPS)和全球土地蒸发阿姆斯特丹模型(GLEAM)数据开发了高分辨率标准化降水蒸散发指数(SPEI)数据,以捕捉气候变率。面板回归采用普通最小二乘、固定效应和随机效应模型。2001年至2021年间,印度的作物多样性增加了2.6%。在研究期间,印度的非粮食作物土地比例有所增加,从19.79%上升到22.80%。谷子作物种植面积从54.51%下降到50.61%。SPEI是多元化农业的重要因素,呈负相关。更高的城市化、道路密度、市场数量、土壤中有机碳的存在、改良的种子、肥料和农民信贷设施减少了作物多样性。获得灌溉增加了种植多样化作物的可能性。提高农民的教育水平对印度作物多样性的实践产生了积极影响。印度干旱易发地区的农民经常采用多样化的种植方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
24
期刊介绍: The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信