Shaokai Zhao, Bin Chen, Hui Wang, Zhiyuan Luo, Zhang Tao
{"title":"A Feed-Forward Neural Network for Increasing the Hopfield-Network Storage Capacity","authors":"Shaokai Zhao, Bin Chen, Hui Wang, Zhiyuan Luo, Zhang Tao","doi":"10.1142/S0129065722500277","DOIUrl":null,"url":null,"abstract":"In the hippocampal dentate gyrus (DG), pattern separation mainly depends on the concepts of 'expansion recoding', meaning random mixing of different DG input channels. However, recent advances in neurophysiology have challenged the theory of pattern separation based on these concepts. In this study, we propose a novel feed-forward neural network, inspired by the structure of the DG and neural oscillatory analysis, to increase the Hopfield-network storage capacity. Unlike the previously published feed-forward neural networks, our bio-inspired neural network is designed to take advantage of both biological structure and functions of the DG. To better understand the computational principles of pattern separation in the DG, we have established a mouse model of environmental enrichment. We obtained a possible computational model of the DG, associated with better pattern separation ability, by using neural oscillatory analysis. Furthermore, we have developed a new algorithm based on Hebbian learning and coupling direction of neural oscillation to train the proposed neural network. The simulation results show that our proposed network significantly expands the storage capacity of Hopfield network, and more effective pattern separation is achieved. The storage capacity rises from 0.13 for the standard Hopfield network to 0.32 using our model when the overlap in patterns is 10%.","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"1 1","pages":"2250027"},"PeriodicalIF":6.6000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500277","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In the hippocampal dentate gyrus (DG), pattern separation mainly depends on the concepts of 'expansion recoding', meaning random mixing of different DG input channels. However, recent advances in neurophysiology have challenged the theory of pattern separation based on these concepts. In this study, we propose a novel feed-forward neural network, inspired by the structure of the DG and neural oscillatory analysis, to increase the Hopfield-network storage capacity. Unlike the previously published feed-forward neural networks, our bio-inspired neural network is designed to take advantage of both biological structure and functions of the DG. To better understand the computational principles of pattern separation in the DG, we have established a mouse model of environmental enrichment. We obtained a possible computational model of the DG, associated with better pattern separation ability, by using neural oscillatory analysis. Furthermore, we have developed a new algorithm based on Hebbian learning and coupling direction of neural oscillation to train the proposed neural network. The simulation results show that our proposed network significantly expands the storage capacity of Hopfield network, and more effective pattern separation is achieved. The storage capacity rises from 0.13 for the standard Hopfield network to 0.32 using our model when the overlap in patterns is 10%.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.