{"title":"Equivariant 4-genera of strongly invertible and periodic knots","authors":"Keegan Boyle, Ahmad Issa","doi":"10.1112/topo.12254","DOIUrl":null,"url":null,"abstract":"<p>We study the equivariant genera of strongly invertible and periodic knots. Our techniques include some new strongly invertible concordance group invariants, Donaldson's theorem, and the g-signature. We find many new examples where the equivariant 4-genus is larger than the 4-genus.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
We study the equivariant genera of strongly invertible and periodic knots. Our techniques include some new strongly invertible concordance group invariants, Donaldson's theorem, and the g-signature. We find many new examples where the equivariant 4-genus is larger than the 4-genus.