I. Wu, Tzu-Li Chen, Guan-Qun Hong, Yen-Ming Chen, Tzu-Chi Liu
{"title":"A Symbolic Time-series Data Mining Framework for Analyzing Load Profiles of Electricity Consumption","authors":"I. Wu, Tzu-Li Chen, Guan-Qun Hong, Yen-Ming Chen, Tzu-Chi Liu","doi":"10.6182/JLIS.2017.15(2).021","DOIUrl":null,"url":null,"abstract":"能源在永續發展工業已被視為重要的管理資產,因此,如何減少能源消耗並有效率地追蹤及管理能源為重要的挑戰。本研究基於電力負載追蹤電力消耗狀況提出符號化時間序列電力資料探勘架構,首先,研究應用分段聚合近似法(piecewise aggregate approximation, PAA)進行時間序列降維處理,接著採用符號聚合近似演算法(symbolic aggregate approximation, SAX)將降維後序列進行符號化,並改良SAX演算法的時間序列下限制(lower-bounding)距離衡量計算公式。研究以鋼鐵鍛造公司的大型退火爐為例進行方法驗證,實驗結果顯示採用PAA法較傳統的固定端點取法較能預測機器狀況;另一實驗結果顯示改良SAX之下限制距離公式能更準確地計算負載曲線之間的相似度。本研究所提出之架構與方法將有助於工廠進行後續正異常電力樣式預測。","PeriodicalId":40348,"journal":{"name":"Journal of Library and Information Studies","volume":"15 1","pages":"21-44"},"PeriodicalIF":0.2000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Library and Information Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6182/JLIS.2017.15(2).021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}