Geomorphometric comparison of DEMs built by different interpolation methods

Bartłomiej Szypuła
{"title":"Geomorphometric comparison of DEMs built by different interpolation methods","authors":"Bartłomiej Szypuła","doi":"10.12657/LANDFANA.032.004","DOIUrl":null,"url":null,"abstract":"One of the most important stages of creating DEMs is the selection of a suitable interpolation algorithm. In this paper I decided to take a look at the most popular methods of data interpolation: Inverse Distance Weighting, Natural Neighbour, Spline, Radial Basis Functions, Local Polynomial and Kriging. As the research area served fragment (20 km2) of the Silesian Upland with diversified relief. I analysed visual effects (3D view and profiles), summarized the basic geomorphometric statistics (heights, local relief, slopes, aspects, curvatures) and an assessment of the vertical accuracy of developed models (RMSE and result conformity) have made. After conducted studies it can be stated, that the best interpolation methods for analyse of the relief are Natural Neighbour and Kriging, because they do not create any artefacts.","PeriodicalId":30719,"journal":{"name":"Landform Analysis","volume":"32 1","pages":"45-58"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landform Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12657/LANDFANA.032.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

One of the most important stages of creating DEMs is the selection of a suitable interpolation algorithm. In this paper I decided to take a look at the most popular methods of data interpolation: Inverse Distance Weighting, Natural Neighbour, Spline, Radial Basis Functions, Local Polynomial and Kriging. As the research area served fragment (20 km2) of the Silesian Upland with diversified relief. I analysed visual effects (3D view and profiles), summarized the basic geomorphometric statistics (heights, local relief, slopes, aspects, curvatures) and an assessment of the vertical accuracy of developed models (RMSE and result conformity) have made. After conducted studies it can be stated, that the best interpolation methods for analyse of the relief are Natural Neighbour and Kriging, because they do not create any artefacts.
不同插值方法构建dem的地貌学比较
创建DEM的最重要的阶段之一是选择合适的插值算法。在这篇论文中,我决定看看最流行的数据插值方法:逆距离加权、自然邻域、样条曲线、径向基函数、局部多项式和克里格。由于研究区域为西里西亚高地的碎片(20平方公里)提供了多样化的地貌。我分析了视觉效果(三维视图和剖面),总结了基本的地貌统计数据(高度、局部起伏、坡度、侧面、曲率),并对所开发模型的垂直精度进行了评估(RMSE和结果一致性)。经过研究,可以说,分析地形的最佳插值方法是Natural Neighbour和Kriging,因为它们不会产生任何伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信