Exact Controllability for a Class of Fractional Semilinear System of Order 1 < q < 2 with Instantaneous and Noninstantaneous Impulses

IF 1.2 Q2 MATHEMATICS, APPLIED
Yunhao Chu, Yansheng Liu
{"title":"Exact Controllability for a Class of Fractional Semilinear System of Order \n 1\n <</mo>\n q\n <</mo>\n 2\n with Instantaneous and Noninstantaneous Impulses","authors":"Yunhao Chu, Yansheng Liu","doi":"10.1155/2023/8300785","DOIUrl":null,"url":null,"abstract":"This paper is mainly concerned with the existence of mild solutions and exact controllability for a class of fractional semilinear system of order \n \n q\n ∈\n \n \n 1\n ,\n 2\n \n \n \n with instantaneous and noninstantaneous impulses. First, combining the Kuratowski measure of noncompactness and the Mönch fixed point theorem, we investigated the existence result for the considered system. It is remarkable that our assumptions for impulses and the nonlinear term are weaker than the Lipschitz conditions. Next, on this basis, the exact controllability for the considered system is determined. In the end, an example is provided to support the main findings.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8300785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is mainly concerned with the existence of mild solutions and exact controllability for a class of fractional semilinear system of order q ∈ 1 , 2 with instantaneous and noninstantaneous impulses. First, combining the Kuratowski measure of noncompactness and the Mönch fixed point theorem, we investigated the existence result for the considered system. It is remarkable that our assumptions for impulses and the nonlinear term are weaker than the Lipschitz conditions. Next, on this basis, the exact controllability for the considered system is determined. In the end, an example is provided to support the main findings.
一类具有瞬时脉冲和非瞬时脉冲的1阶分数阶半线性系统的精确可控性
本文主要研究一类具有瞬时和非瞬时脉冲的q∈1,2阶分数阶半线性系统的温和解的存在性和精确可控性。首先,结合非紧性的Kuratowski测度和Mönch不动点定理,研究了所考虑系统的存在性结果。值得注意的是,我们对脉冲和非线性项的假设比Lipschitz条件弱。接下来,在此基础上,确定所考虑系统的精确可控性。最后,提供了一个例子来支持主要的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信