{"title":"Shehu transform on time-fractional Schrödinger equations – an analytical approach","authors":"Mamta Kapoor","doi":"10.1515/ijnsns-2021-0423","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, time-fractional Schrödinger equations are dealt with for the analytical solution using an integral transform named Shehu Transform. Three kinds of time-fractional Schrödinger equations are discussed in the present study. Shehu transform is utilized to reduce the time-fractional PDE along with the fractional derivative in the Caputo sense. The present method is easy to implement in the search for an analytical solution. As no discretization or numerical program is required, the present scheme will surely be helpful in finding the analytical solution to some complex-natured fractional PDEs.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0423","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In the present study, time-fractional Schrödinger equations are dealt with for the analytical solution using an integral transform named Shehu Transform. Three kinds of time-fractional Schrödinger equations are discussed in the present study. Shehu transform is utilized to reduce the time-fractional PDE along with the fractional derivative in the Caputo sense. The present method is easy to implement in the search for an analytical solution. As no discretization or numerical program is required, the present scheme will surely be helpful in finding the analytical solution to some complex-natured fractional PDEs.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.