J. Huneault, J. Loiseau, M. T. Hildebrand, A. J. Higgins
{"title":"An explosively driven launcher capable of \\(10\\,\\mathrm{km\\,s}^{-1}\\) projectile velocities","authors":"J. Huneault, J. Loiseau, M. T. Hildebrand, A. J. Higgins","doi":"10.1007/s00193-022-01095-1","DOIUrl":null,"url":null,"abstract":"<div><p>Launching large (> 1 g) well-characterized projectiles to velocities beyond <span>\\({10}\\,\\mathrm{km\\,s}^{-1}\\)</span> is of interest for a number of scientific fields, but is beyond the reach of current hypervelocity launcher technology. This paper reports the development of an explosively driven light-gas gun that has demonstrated the ability to launch 8-mm-diameter 0.36-g magnesium projectiles to <span>\\({10.4}\\,\\,\\mathrm{km\\,s}^{-1}\\)</span>. The implosion-driven launcher (IDL) uses the linear implosion of a pressurized tube to shock-compress helium gas to a pressure of 5 GPa, which then expands to propel a projectile to hypervelocity. The launch cycle of the IDL is explored with the use of down-bore velocimetry experiments and a quasi-one-dimensional internal ballistics solver. A detailed overview of the design of the 8-mm launcher is presented, with an emphasis on the unique considerations which arise from the explosively driven propellant compression and the resulting extreme pressures and temperatures. The high average driving pressure results in a launcher that is compact, with a total length typically less than a meter. The possibility to scale the design to larger projectile sizes (25 mm diameter) is demonstrated. Finally, concepts for a modified launch cycle which may allow the IDL to reach significantly greater projectile velocities are explored conceptually and with preliminary experiments.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"32 7","pages":"569 - 591"},"PeriodicalIF":1.7000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-022-01095-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Launching large (> 1 g) well-characterized projectiles to velocities beyond \({10}\,\mathrm{km\,s}^{-1}\) is of interest for a number of scientific fields, but is beyond the reach of current hypervelocity launcher technology. This paper reports the development of an explosively driven light-gas gun that has demonstrated the ability to launch 8-mm-diameter 0.36-g magnesium projectiles to \({10.4}\,\,\mathrm{km\,s}^{-1}\). The implosion-driven launcher (IDL) uses the linear implosion of a pressurized tube to shock-compress helium gas to a pressure of 5 GPa, which then expands to propel a projectile to hypervelocity. The launch cycle of the IDL is explored with the use of down-bore velocimetry experiments and a quasi-one-dimensional internal ballistics solver. A detailed overview of the design of the 8-mm launcher is presented, with an emphasis on the unique considerations which arise from the explosively driven propellant compression and the resulting extreme pressures and temperatures. The high average driving pressure results in a launcher that is compact, with a total length typically less than a meter. The possibility to scale the design to larger projectile sizes (25 mm diameter) is demonstrated. Finally, concepts for a modified launch cycle which may allow the IDL to reach significantly greater projectile velocities are explored conceptually and with preliminary experiments.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.