B. Qian, Ward N. Smith, Q. Jing, Yong Min Kim, G. Jégo, B. Grant, S. Duguid, Ken Hester, A. Nelson
{"title":"Climate conditions in the near-term, mid-term and distant future for growing soybeans in Canada","authors":"B. Qian, Ward N. Smith, Q. Jing, Yong Min Kim, G. Jégo, B. Grant, S. Duguid, Ken Hester, A. Nelson","doi":"10.1139/cjps-2022-0233","DOIUrl":null,"url":null,"abstract":"Abstract The soybean industry in Canada aimed to extensively expand soybean production to benefit from new early-maturing varieties and the warming climate. However, setbacks in the soybean industry since 2017 demonstrated the impacts of climate risk and global market uncertainty. Therefore, a better understanding of future climate conditions that will impact soybean growth in Canada is needed for decision-making in the sector, such as prioritizing regions for expansion and developing climate change adaptation strategies through either agronomic management practices or breeding new cultivars. Based on climate projections from a set of global climate models, we analyzed climate conditions for growing soybeans, including growing season start, crop heat units, precipitation, precipitation deficits and climate extremes, in the near-term (2030s), the mid-term (2050s) and the distant future (2070s). We found that a future warmer climate with an increase of 1.6, 2.8 and 4.1 °C in the growing season (May–September) mean temperature averaged over Canada’s land area in the near-term, mid-term and distant future under SSP3-7.0 would favour the expansion of soybean production further north and west. However, an increase of approximately 200 mm in precipitation deficits on the semiarid Canadian Prairies in the mid-term would constrain soybean production unless irrigation could be introduced. Heat- and drought-tolerant cultivars should be developed to adapt soybean production to a changing climate, in addition to the adoption of late-maturing cultivars that would benefit from the lengthened growing season and increased crop heat units.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"161 - 174"},"PeriodicalIF":1.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0233","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The soybean industry in Canada aimed to extensively expand soybean production to benefit from new early-maturing varieties and the warming climate. However, setbacks in the soybean industry since 2017 demonstrated the impacts of climate risk and global market uncertainty. Therefore, a better understanding of future climate conditions that will impact soybean growth in Canada is needed for decision-making in the sector, such as prioritizing regions for expansion and developing climate change adaptation strategies through either agronomic management practices or breeding new cultivars. Based on climate projections from a set of global climate models, we analyzed climate conditions for growing soybeans, including growing season start, crop heat units, precipitation, precipitation deficits and climate extremes, in the near-term (2030s), the mid-term (2050s) and the distant future (2070s). We found that a future warmer climate with an increase of 1.6, 2.8 and 4.1 °C in the growing season (May–September) mean temperature averaged over Canada’s land area in the near-term, mid-term and distant future under SSP3-7.0 would favour the expansion of soybean production further north and west. However, an increase of approximately 200 mm in precipitation deficits on the semiarid Canadian Prairies in the mid-term would constrain soybean production unless irrigation could be introduced. Heat- and drought-tolerant cultivars should be developed to adapt soybean production to a changing climate, in addition to the adoption of late-maturing cultivars that would benefit from the lengthened growing season and increased crop heat units.
期刊介绍:
Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.