{"title":"Structural Behavior of GFRP - RC Slender Columns Under Various Eccentricity Loading Conditions","authors":"R. Z. Hamed, H. Hassan","doi":"10.2478/cee-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract Glass fibers reinforced polymer (GFRP) were used to longitudinally and transversally 12 columns and while the other 4 columns were reinforced with steel or steel and GFRP as reference specimens. This research dealt with several parameters under different loading conditions, such as the reinforcing material and spacing between ties. This study aims to find out the ability of the reinforced columns with GFRP to bear the loads. In addition, investigate the mode of failure in these columns and their appropriateness in the structures since the columns are compression members. The tested results revealed that the concentric loading columns give higher resistance than their eccentrically loaded counterparts. Also, the hybrid column (steel and GFRP) had the highest peak load compared with the fully reinforced steel and GFRP columns. In addition, the fully GFRP RC- column had an ultimate load slightly less than its steel counterpart under the same loading condition.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":"19 1","pages":"1 - 16"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Glass fibers reinforced polymer (GFRP) were used to longitudinally and transversally 12 columns and while the other 4 columns were reinforced with steel or steel and GFRP as reference specimens. This research dealt with several parameters under different loading conditions, such as the reinforcing material and spacing between ties. This study aims to find out the ability of the reinforced columns with GFRP to bear the loads. In addition, investigate the mode of failure in these columns and their appropriateness in the structures since the columns are compression members. The tested results revealed that the concentric loading columns give higher resistance than their eccentrically loaded counterparts. Also, the hybrid column (steel and GFRP) had the highest peak load compared with the fully reinforced steel and GFRP columns. In addition, the fully GFRP RC- column had an ultimate load slightly less than its steel counterpart under the same loading condition.