K. Amelin, O. Granichin, A.V. Leonova, Vikentiy Pankov, Denis Uzhva, V. Erofeeva, Vladislav Ershov
{"title":"A new method of adaptive mesoscale control in complex multiagent networked dynamical systems","authors":"K. Amelin, O. Granichin, A.V. Leonova, Vikentiy Pankov, Denis Uzhva, V. Erofeeva, Vladislav Ershov","doi":"10.35470/2226-4116-2022-11-4-175-189","DOIUrl":null,"url":null,"abstract":"Centralized strategies applied to large-scale systems require a vast amount of computational and communication resources. In contrast to them, distributed strategies offer higher scalability and reliability. However, communication and coordination among agents tremendously impact performance of systems controlled in the distributed manner. The existing methods lead to clustering, where the coordination between agents is limited to groups of entities to be controlled. The size of these groups are usually known in advance. In turn, many systems exhibit self-organization and dynamically form clustering structure. In that sense, control methods should adapt to such dynamic structures offering the same balance between performance and communication/computational demands. In this paper, we propose a new approach to complex system control based on efficient cluster (mesoscopic) control paradigm. We demonstrate its efficacy in scenarios, where a group of agents should reach a certain goal.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2022-11-4-175-189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Centralized strategies applied to large-scale systems require a vast amount of computational and communication resources. In contrast to them, distributed strategies offer higher scalability and reliability. However, communication and coordination among agents tremendously impact performance of systems controlled in the distributed manner. The existing methods lead to clustering, where the coordination between agents is limited to groups of entities to be controlled. The size of these groups are usually known in advance. In turn, many systems exhibit self-organization and dynamically form clustering structure. In that sense, control methods should adapt to such dynamic structures offering the same balance between performance and communication/computational demands. In this paper, we propose a new approach to complex system control based on efficient cluster (mesoscopic) control paradigm. We demonstrate its efficacy in scenarios, where a group of agents should reach a certain goal.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.