Comparison of some non-linear functions to describe the growth for Linda geese with CART and XGBoost algorithms

IF 1.4 4区 农林科学 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Cem Tırınk, Hasan Önder, S. Yurtseven, Zeliha Kaya Akil
{"title":"Comparison of some non-linear functions to describe the growth for Linda geese with CART and XGBoost algorithms","authors":"Cem Tırınk, Hasan Önder, S. Yurtseven, Zeliha Kaya Akil","doi":"10.17221/129/2022-cjas","DOIUrl":null,"url":null,"abstract":"The aim of this study was to determine the best non-linear function describing the growth of the Linda goose breed. To achieve this aim, five non-linear functions, such as exponential, logistic, von Bertalanffy, Brody and Gompertz, were employed to define the live weight-age relationship for male and female Linda geese. In the study, 2 397 body weight-age records from 75 females and 66 males collected from three days to 17 weeks of age were evaluated using the “easynls” and “nlstools” packages for growth modelling of the Linda goose in R software. Each model was analysed in the live weight records of all the geese separately for males and females. To measure the predictive quality of the growth functions used individually here, model goodness of fit criteria, such as the coefficient of determination (R2), adjusted coefficient of determination (R2adj), root mean square error (RMSE), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) were implemented. Among the evaluated non-linear functions, von Bertalanffy model gave the best fit of describing the growth curve of female and male Linda geese. Based on the “rpart”, “rpart.plot”, and “caret” R packages, the CART and XGBoost algorithms were specified in the prediction of live weight of Linda geese at 17 weeks of age from the growth parameters of the von Bertalanffy model and the sex factor. XGBoost produced better results in superiority compared with the CART algorithm. In conclusion, it could be suggested that the von Bertalanffy model might help geese breeders to determine the appropriate slaughtering time, feeding regimes, and overcome flock management problems. The results of the XGBoost algorithm might present a good reference for breeders to establish breed standards and selection strategies of Linda geese in the growth parameters for breeding purposes.","PeriodicalId":10972,"journal":{"name":"Czech Journal of Animal Science","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Journal of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/129/2022-cjas","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to determine the best non-linear function describing the growth of the Linda goose breed. To achieve this aim, five non-linear functions, such as exponential, logistic, von Bertalanffy, Brody and Gompertz, were employed to define the live weight-age relationship for male and female Linda geese. In the study, 2 397 body weight-age records from 75 females and 66 males collected from three days to 17 weeks of age were evaluated using the “easynls” and “nlstools” packages for growth modelling of the Linda goose in R software. Each model was analysed in the live weight records of all the geese separately for males and females. To measure the predictive quality of the growth functions used individually here, model goodness of fit criteria, such as the coefficient of determination (R2), adjusted coefficient of determination (R2adj), root mean square error (RMSE), Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) were implemented. Among the evaluated non-linear functions, von Bertalanffy model gave the best fit of describing the growth curve of female and male Linda geese. Based on the “rpart”, “rpart.plot”, and “caret” R packages, the CART and XGBoost algorithms were specified in the prediction of live weight of Linda geese at 17 weeks of age from the growth parameters of the von Bertalanffy model and the sex factor. XGBoost produced better results in superiority compared with the CART algorithm. In conclusion, it could be suggested that the von Bertalanffy model might help geese breeders to determine the appropriate slaughtering time, feeding regimes, and overcome flock management problems. The results of the XGBoost algorithm might present a good reference for breeders to establish breed standards and selection strategies of Linda geese in the growth parameters for breeding purposes.
用CART和XGBoost算法描述Linda鹅生长的一些非线性函数的比较
本研究的目的是确定描述林达鹅品种生长的最佳非线性函数。为了实现这一目标,采用了五个非线性函数,如指数函数、逻辑函数、von Bertalanffy函数、Brody函数和Gompertz函数,来定义雄性和雌性Linda鹅的活重-年龄关系。在这项研究中,使用“easynls”和“nlstoes”软件包评估了从3天至17周龄收集的75只雌性和66只雄性的2397份体重年龄记录,用于R软件中琳达鹅的生长建模。在所有鹅的活重记录中,分别对雄性和雌性的每个模型进行了分析。为了测量这里单独使用的增长函数的预测质量,实现了模型拟合优度标准,如确定系数(R2)、调整后的确定系数(R2adj)、均方根误差(RMSE)、Akaike信息标准(AIC)和贝叶斯信息标准(BIC)。在评价的非线性函数中,von-Bertalanfy模型最适合描述雌性和雄性Linda鹅的生长曲线。基于“rpart”、“rpart.plot”和“caret”R包,根据von Bertalanffy模型的生长参数和性别因素,在预测17周龄Linda鹅的活重时指定了CART和XGBoost算法。与CART算法相比,XGBoost算法在优越性方面取得了更好的结果。总之,可以认为von Bertalanffy模型可能有助于鹅饲养者确定合适的屠宰时间、饲养制度,并克服羊群管理问题。XGBoost算法的结果可为育种人员在生长参数中制定林达鹅的品种标准和选择策略提供良好的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Czech Journal of Animal Science
Czech Journal of Animal Science Agriculture, Dairy & Animal Science-奶制品与动物科学
CiteScore
2.40
自引率
16.70%
发文量
44
审稿时长
5 months
期刊介绍: Original scientific papers and critical reviews covering all areas of genetics and breeding, physiology, reproduction, nutrition and feeds, technology, ethology and economics of cattle, pig, sheep, goat, poultry, fish and other farm animal management. Papers are published in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信