Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
S. Salman, A. Elsadany
{"title":"Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect","authors":"S. Salman, A. Elsadany","doi":"10.1515/ijnsns-2021-0476","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we use new methods to investigate different bifurcations of fixed points in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect. The nonstandard discretization scheme produces a discrete analog of the continuous-time toxic-phytoplankton–zooplankton model with Allee effect. The local stability for proposed system around all of its fixed points is derived. We obtain the codimension-1 conditions of various bifurcations such as period doubling and Neimark–Sacker. Moreover, the system produces codimension-2 bifurcations such as resonance 1:1, 1:2, 1:3, and 1:4. Furthermore, the system can produce very rich dynamics, such as the existence of a semi-stable limit cycle, multiple coexisting periodic orbits, and chaotic behavior. Theoretical analysis is validated by numerical methods.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"0 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we use new methods to investigate different bifurcations of fixed points in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect. The nonstandard discretization scheme produces a discrete analog of the continuous-time toxic-phytoplankton–zooplankton model with Allee effect. The local stability for proposed system around all of its fixed points is derived. We obtain the codimension-1 conditions of various bifurcations such as period doubling and Neimark–Sacker. Moreover, the system produces codimension-2 bifurcations such as resonance 1:1, 1:2, 1:3, and 1:4. Furthermore, the system can produce very rich dynamics, such as the existence of a semi-stable limit cycle, multiple coexisting periodic orbits, and chaotic behavior. Theoretical analysis is validated by numerical methods.
具有Allee效应的离散时间有毒-浮游植物-浮游动物模型的高阶余维分岔
摘要在本文中,我们使用新的方法来研究具有Allee效应的离散时间有毒浮游植物-浮游动物模型中不动点的不同分叉。非标准离散化方案产生了具有Allee效应的连续时间有毒浮游植物-浮游动物模型的离散模拟。导出了系统在所有不动点附近的局部稳定性。我们得到了诸如倍周期和Neimark–Sacker等各种分叉的余维-1条件。此外,该系统产生余维2分叉,如共振1:1、1:2、1:3和1:4。此外,该系统可以产生非常丰富的动力学,如半稳定极限环的存在、多个共存的周期轨道和混沌行为。通过数值方法对理论分析进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信