Yixin Xiong, Yongcheng Zhou, Yujuan Wang, Quanxing Liu, Lei Deng
{"title":"Fully Automated Neural Network Framework for Pulmonary Nodules Detection and Segmentation","authors":"Yixin Xiong, Yongcheng Zhou, Yujuan Wang, Quanxing Liu, Lei Deng","doi":"10.3233/aic-220318","DOIUrl":null,"url":null,"abstract":"Lung cancer is the leading cause of cancer death worldwide, and most patients are diagnosed with advanced stages for lack of symptoms in the early stages of the disease, leading to poor prognosis. It is thus of great importance to detect lung cancer in the early stages which can reduce mortality and improve patient survival significantly. Although there are many computer aided diagnosis (CAD) systems used for detecting pulmonary nodules, there are still few CAD systems for detection and segmentation, and their performance on small nodules is not ideal. Thus, in this paper, we propose a deep cascaded multitask framework called mobilenet split-attention Yolo unet, the mobilenet split-attention Yolo(Msa-yolo) greatly enhance the feature of small nodules and boost up their performance, the overall result shows that the mean accuracy precision (mAP) of our Msa-Yolo compared to Yolox has increased from 85.10% to 86.64% on LUNA16 dataset, and from 90.13% to 94.15% on LCS dataset compared to YoloX. Besides, we get only 8.35 average number of candidates per scan with 96.32% sensitivity on LUNA16 dataset, which greatly outperforms other existing systems. At the segmentation stage, the mean intersection over union (mIOU) of our CAD system has increased from 71.66% to 76.84% on LCS dataset comparing to baseline. Conclusion: A fast, accurate and robust CAD system for nodule detection, segmentation and classification is proposed in this paper. And it is confirmed by the experimental results that the proposed system possesses the ability to detect and segment small nodules.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-220318","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer is the leading cause of cancer death worldwide, and most patients are diagnosed with advanced stages for lack of symptoms in the early stages of the disease, leading to poor prognosis. It is thus of great importance to detect lung cancer in the early stages which can reduce mortality and improve patient survival significantly. Although there are many computer aided diagnosis (CAD) systems used for detecting pulmonary nodules, there are still few CAD systems for detection and segmentation, and their performance on small nodules is not ideal. Thus, in this paper, we propose a deep cascaded multitask framework called mobilenet split-attention Yolo unet, the mobilenet split-attention Yolo(Msa-yolo) greatly enhance the feature of small nodules and boost up their performance, the overall result shows that the mean accuracy precision (mAP) of our Msa-Yolo compared to Yolox has increased from 85.10% to 86.64% on LUNA16 dataset, and from 90.13% to 94.15% on LCS dataset compared to YoloX. Besides, we get only 8.35 average number of candidates per scan with 96.32% sensitivity on LUNA16 dataset, which greatly outperforms other existing systems. At the segmentation stage, the mean intersection over union (mIOU) of our CAD system has increased from 71.66% to 76.84% on LCS dataset comparing to baseline. Conclusion: A fast, accurate and robust CAD system for nodule detection, segmentation and classification is proposed in this paper. And it is confirmed by the experimental results that the proposed system possesses the ability to detect and segment small nodules.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.