A. Huhta, P. Tuisku, T. Balić-Žunić, A. Kärki, Kivitieto Oy
{"title":"Magnesite soapstone in use of fire chamber constructions: composition and structure adaptation","authors":"A. Huhta, P. Tuisku, T. Balić-Žunić, A. Kärki, Kivitieto Oy","doi":"10.17741/BGSF/91.1.004","DOIUrl":null,"url":null,"abstract":"The Finnish soapstone industry has found through practical experience that the surface of the magnesite soapstone used in fire chambers and funnels hardens over time. We have studied a magnesite soapstone used in a fireplace continuously for 60 years. The mineralogical changes, that took place during heating and subsequent cooling of the fireplace have been investigated with electron probe microanalyzer and X-ray diffractometer to find an explanation, what kind of reactions caused the hardening. We found that ferromagnesite has been altered to pseudomorphic aggregates composed of ferropericlase and magnesioferrite in the nearest ~30 mm from the surface exposed to fire. Iron has been mobilized in the uppermost 3 mm, enriched in the rims, and depleted from the cores of the ferropericlase aggregates. Magnesioferrite occurs preferably in the fire chamber side of the aggregates in the uppermost 0.20 mm. Talc rims are altered to forsterite and/or enstatite in the reaction with ferromagnesite or its alteration products in the uppermost ~1 mm. In addition, wood combustion gases caused considerable enrichment of zinc and potassium in the chamber surface rock to the depth on 0.20 mm and 3 mm, respectively. The enrichment occurred by crystallization of Zn bearing ferropericlase and magnesioferrite and by crystallization of K bearing sheet silicates.","PeriodicalId":55302,"journal":{"name":"Bulletin of the Geological Society of Finland","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Geological Society of Finland","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17741/BGSF/91.1.004","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The Finnish soapstone industry has found through practical experience that the surface of the magnesite soapstone used in fire chambers and funnels hardens over time. We have studied a magnesite soapstone used in a fireplace continuously for 60 years. The mineralogical changes, that took place during heating and subsequent cooling of the fireplace have been investigated with electron probe microanalyzer and X-ray diffractometer to find an explanation, what kind of reactions caused the hardening. We found that ferromagnesite has been altered to pseudomorphic aggregates composed of ferropericlase and magnesioferrite in the nearest ~30 mm from the surface exposed to fire. Iron has been mobilized in the uppermost 3 mm, enriched in the rims, and depleted from the cores of the ferropericlase aggregates. Magnesioferrite occurs preferably in the fire chamber side of the aggregates in the uppermost 0.20 mm. Talc rims are altered to forsterite and/or enstatite in the reaction with ferromagnesite or its alteration products in the uppermost ~1 mm. In addition, wood combustion gases caused considerable enrichment of zinc and potassium in the chamber surface rock to the depth on 0.20 mm and 3 mm, respectively. The enrichment occurred by crystallization of Zn bearing ferropericlase and magnesioferrite and by crystallization of K bearing sheet silicates.
期刊介绍:
Bulletin of the Geological Society of Finland (BGSF) publishes research articles and short communications in all branches of geosciences. Contributions from outside Finland are welcome, provided that they contain material relevant to Finnish geology or are of general interest.