Ziyue Wang, Zixuan Chen, Jianzhuang Xiao, Tao Ding
{"title":"Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar.","authors":"Ziyue Wang, Zixuan Chen, Jianzhuang Xiao, Tao Ding","doi":"10.1089/3dp.2022.0338","DOIUrl":null,"url":null,"abstract":"<p><p>A novel shear test method on shear bond behavior of 3D printed interlayer interfaces and interstrip interfaces was proposed in this study. Thereafter, the effect of different replacement ratios of recycled sand, printing intervals, and surface treatments were investigated. The test results showed that under the same printing condition, the interfacial shear strengths of interlayer interface and interstrip interface were similar to each other. The interfacial shear strength slightly decreased with the increase of the replacement ratio of recycled sand, while it sharply decreased with the extension of printing interval time. The interfaces in 3D printed recycled mortar had higher time sensitivity compared with 3D printed natural mortar. Considering that discontinuous construction will introduce inferior interfaces in 3D printed concrete components, effective surface treatments should be conducted. According to the test results, the improvement effect of surface treatments was epoxy paste > cement paste > surface wetting > no treatment.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0338","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
A novel shear test method on shear bond behavior of 3D printed interlayer interfaces and interstrip interfaces was proposed in this study. Thereafter, the effect of different replacement ratios of recycled sand, printing intervals, and surface treatments were investigated. The test results showed that under the same printing condition, the interfacial shear strengths of interlayer interface and interstrip interface were similar to each other. The interfacial shear strength slightly decreased with the increase of the replacement ratio of recycled sand, while it sharply decreased with the extension of printing interval time. The interfaces in 3D printed recycled mortar had higher time sensitivity compared with 3D printed natural mortar. Considering that discontinuous construction will introduce inferior interfaces in 3D printed concrete components, effective surface treatments should be conducted. According to the test results, the improvement effect of surface treatments was epoxy paste > cement paste > surface wetting > no treatment.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.