{"title":"Bivariate fractal interpolation functions on triangular domain for numerical integration and approximation","authors":"M. Aparna, P. Paramanathan","doi":"10.1142/s0219876223500196","DOIUrl":null,"url":null,"abstract":"The primary objectives of this paper are to present the construction of bivariate fractal interpolation functions over triangular interpolating domain using the concept of vertex coloring and to propose a double integration formula for the constructed interpolation functions. Unlike the conventional constructions, each vertex in the partition of the triangular region has been assigned a color such that the chromatic number of the partition is 3. A new method for the partitioning of the triangle is proposed with a result concerning the chromatic number of its graph. Following the construction, a formula determining the vertical scaling factor is provided. With the newly defined vertical scaling factor, it is clearly observed that the value of the double integral coincides with the integral value calculated using fractal theory. Further, a relation connecting the fractal interpolation function with the equation of the plane passing through the vertices of the triangle is established. Convergence of the proposed method to the actual integral value is proven with sufficient lemmas and theorems. Sufficient examples are also provided to illustrate the method of construction and to verify the formula of double integration.","PeriodicalId":54968,"journal":{"name":"International Journal of Computational Methods","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219876223500196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary objectives of this paper are to present the construction of bivariate fractal interpolation functions over triangular interpolating domain using the concept of vertex coloring and to propose a double integration formula for the constructed interpolation functions. Unlike the conventional constructions, each vertex in the partition of the triangular region has been assigned a color such that the chromatic number of the partition is 3. A new method for the partitioning of the triangle is proposed with a result concerning the chromatic number of its graph. Following the construction, a formula determining the vertical scaling factor is provided. With the newly defined vertical scaling factor, it is clearly observed that the value of the double integral coincides with the integral value calculated using fractal theory. Further, a relation connecting the fractal interpolation function with the equation of the plane passing through the vertices of the triangle is established. Convergence of the proposed method to the actual integral value is proven with sufficient lemmas and theorems. Sufficient examples are also provided to illustrate the method of construction and to verify the formula of double integration.
期刊介绍:
The purpose of this journal is to provide a unique forum for the fast publication and rapid dissemination of original research results and innovative ideas on the state-of-the-art on computational methods. The methods should be innovative and of high scholarly, academic and practical value.
The journal is devoted to all aspects of modern computational methods including
mathematical formulations and theoretical investigations;
interpolations and approximation techniques;
error analysis techniques and algorithms;
fast algorithms and real-time computation;
multi-scale bridging algorithms;
adaptive analysis techniques and algorithms;
implementation, coding and parallelization issues;
novel and practical applications.
The articles can involve theory, algorithm, programming, coding, numerical simulation and/or novel application of computational techniques to problems in engineering, science, and other disciplines related to computations. Examples of fields covered by the journal are:
Computational mechanics for solids and structures,
Computational fluid dynamics,
Computational heat transfer,
Computational inverse problem,
Computational mathematics,
Computational meso/micro/nano mechanics,
Computational biology,
Computational penetration mechanics,
Meshfree methods,
Particle methods,
Molecular and Quantum methods,
Advanced Finite element methods,
Advanced Finite difference methods,
Advanced Finite volume methods,
High-performance computing techniques.