{"title":"Knowledge fusion enhanced graph neural network for traffic flow prediction","authors":"Shun Wang, Yong Zhang, Yongli Hu, Baocai Yin","doi":"10.1016/j.physa.2023.128842","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic flow prediction is a very important and challenging task in intelligent transportation systems. There has been a lot of related research work on this issue, especially the application of graph convolutional networks has achieved quite good results. However, the existing methods usually only consider the temporal and spatial dependence in traffic data, and cannot fully explore the implicit semantic relationship from traffic knowledge. To solve this problem, we model the transportation system as topological graphs containing different types of knowledge such as network structure, regional functionality, and traffic flow patterns. We propose a Knowledge Fusion Enhanced Graph Neural Network<span> (KFGNN) module based on multiple graph convolutional networks. Specifically, topological graphs are represented by relation matrices obtained by calculating traffic semantic similarity, and are used as the input of the Graph Convolutional Network(GCN) layer to capture the semantic dependence. The KFGNN module finally fuses these features to obtain a complex semantic representation of the traffic flow. Finally, knowledge fusion enhanced models (KE-TGCN, KE-STGCN and KE-GWN) are proposed to verify the effectiveness and versatility of this module. Experimental results on real-world datasets show that knowledge-enhanced models have higher prediction performance compared with classic GCN-based models.</span></p></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"623 ","pages":"Article 128842"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437123003977","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Traffic flow prediction is a very important and challenging task in intelligent transportation systems. There has been a lot of related research work on this issue, especially the application of graph convolutional networks has achieved quite good results. However, the existing methods usually only consider the temporal and spatial dependence in traffic data, and cannot fully explore the implicit semantic relationship from traffic knowledge. To solve this problem, we model the transportation system as topological graphs containing different types of knowledge such as network structure, regional functionality, and traffic flow patterns. We propose a Knowledge Fusion Enhanced Graph Neural Network (KFGNN) module based on multiple graph convolutional networks. Specifically, topological graphs are represented by relation matrices obtained by calculating traffic semantic similarity, and are used as the input of the Graph Convolutional Network(GCN) layer to capture the semantic dependence. The KFGNN module finally fuses these features to obtain a complex semantic representation of the traffic flow. Finally, knowledge fusion enhanced models (KE-TGCN, KE-STGCN and KE-GWN) are proposed to verify the effectiveness and versatility of this module. Experimental results on real-world datasets show that knowledge-enhanced models have higher prediction performance compared with classic GCN-based models.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.