{"title":"Design Wind Speed Estimation for Long Span Bridges in Korean Southern and Western Coasts","authors":"Dooyong Cho","doi":"10.46604/ijeti.2020.3545","DOIUrl":null,"url":null,"abstract":"Recently, many long-span cable supported bridges, including the cable stayed bridges and the suspension bridges, have already been constructed or are planned for construction. Because the meteorological values used to estimate the wind load for designing the long-span bridges were based on data from the 1960s through 1995 in Korea, it is necessary to reconsider the proper design wind load for long-span bridges. In this paper, the research area is confined to the southern and western coasts of Korea where many long-span bridges have been built. The method of moment and the least-squares method are used to estimate the expected wind speeds of a 100-year return period for girder bridges; Gumbel’s distribution is used to estimate the expected wind speeds of a 200-year return period for long-span bridges. As the return period wind speed on the land surface is revised because of recent high-speed velocity, the revised return period wind speed is increased by 17%. The compatibility of return period wind speed is also evaluated using the RMS (root mean square) error method. This paper concludes that the least-squares method is more compatible than the method of moment for the case of the southern and western coasts of Korea.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"10 1","pages":"146-155"},"PeriodicalIF":1.3000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2020.3545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Recently, many long-span cable supported bridges, including the cable stayed bridges and the suspension bridges, have already been constructed or are planned for construction. Because the meteorological values used to estimate the wind load for designing the long-span bridges were based on data from the 1960s through 1995 in Korea, it is necessary to reconsider the proper design wind load for long-span bridges. In this paper, the research area is confined to the southern and western coasts of Korea where many long-span bridges have been built. The method of moment and the least-squares method are used to estimate the expected wind speeds of a 100-year return period for girder bridges; Gumbel’s distribution is used to estimate the expected wind speeds of a 200-year return period for long-span bridges. As the return period wind speed on the land surface is revised because of recent high-speed velocity, the revised return period wind speed is increased by 17%. The compatibility of return period wind speed is also evaluated using the RMS (root mean square) error method. This paper concludes that the least-squares method is more compatible than the method of moment for the case of the southern and western coasts of Korea.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.