Phase and Thermal-Driven Transport Across T-Shaped Double Quantum Dot Josephson Junction

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Bhupendra Kumar, Sachin Verma,  Ajay
{"title":"Phase and Thermal-Driven Transport Across T-Shaped Double Quantum Dot Josephson Junction","authors":"Bhupendra Kumar,&nbsp;Sachin Verma,&nbsp; Ajay","doi":"10.1007/s10948-023-06526-3","DOIUrl":null,"url":null,"abstract":"<div><p>The phase- and thermal-driven transport properties of the T-shaped uncorrelated double quantum dot Josephson junction are analyzed by using Keldysh non-equilibrium Green’s function equation of motion technique. In this setup, we have shown that the side-attached quantum dot provides an additional route for electron transmission which is affecting the transport properties by adjusting the interdot hopping between the main dot and the side dot. We began with investigating the impact of interdot hopping on Andreev bound states and Josephson supercurrent. When a small thermal bias is applied across the superconducting leads, the system exhibits a finite thermal response which is primarily due to the thermally induced, quasi-particle current. The behavior of the Josephson supercurrent and the quasi-particle current flowing through the quantum dots is examined for various interdot hopping and thermal biasing. Finally, the system is considered in an open-circuit configuration where the thermally driven quasi-particle current is compensated by the phase-driven Josephson supercurrent and the thermophase effect is observed. The effect of interdot hopping and the position of quantum dot energy level on the thermophase Seebeck coefficient is investigated.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"36 3","pages":"831 - 841"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10948-023-06526-3.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-023-06526-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

The phase- and thermal-driven transport properties of the T-shaped uncorrelated double quantum dot Josephson junction are analyzed by using Keldysh non-equilibrium Green’s function equation of motion technique. In this setup, we have shown that the side-attached quantum dot provides an additional route for electron transmission which is affecting the transport properties by adjusting the interdot hopping between the main dot and the side dot. We began with investigating the impact of interdot hopping on Andreev bound states and Josephson supercurrent. When a small thermal bias is applied across the superconducting leads, the system exhibits a finite thermal response which is primarily due to the thermally induced, quasi-particle current. The behavior of the Josephson supercurrent and the quasi-particle current flowing through the quantum dots is examined for various interdot hopping and thermal biasing. Finally, the system is considered in an open-circuit configuration where the thermally driven quasi-particle current is compensated by the phase-driven Josephson supercurrent and the thermophase effect is observed. The effect of interdot hopping and the position of quantum dot energy level on the thermophase Seebeck coefficient is investigated.

t形双量子点Josephson结的相位和热驱动输运
利用Keldysh非平衡格林函数运动方程技术,分析了t形非相关双量子点Josephson结的相驱动和热驱动输运性质。在这种设置中,我们已经表明,侧附量子点通过调整主点和侧点之间的点间跳变,为电子传输提供了一条额外的途径。我们从研究点间跳变对Andreev束缚态和Josephson超电流的影响开始。当在超导引线上施加一个小的热偏置时,系统表现出有限的热响应,这主要是由于热诱导的准粒子电流。研究了约瑟夫森超电流和准粒子电流通过量子点时的各种点间跳变和热偏置行为。最后,考虑了系统的开路结构,其中热驱动的准粒子电流由相驱动的约瑟夫森超电流补偿,并观察了热相效应。研究了点间跳变和量子点能级位置对热相塞贝克系数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信