{"title":"Impact of Albumin Pre-Coating on Gold Nanoparticles Uptake at Single-Cell Level","authors":"Tao Li, Yun Wang, Meng Wang, Lingna Zheng, Wanqing Dai, Chunlei Jiao, Zhuda Song, Yuhui Ma, Yayun Ding, Zhiyong Zhang, Fang Yang, Xiao He","doi":"10.3390/nano12050749","DOIUrl":null,"url":null,"abstract":"Nanoparticles (NPs) suspension is thermodynamically unstable, agglomeration and sedimentation may occur after introducing NPs into a physiological solution, which in turn affects their recognition and uptake by cells. In this work, rod-like gold NPs (AuNRs) with uniform morphology and size were synthesized to study the impact of bovine serum albumin (BSA) pre-coating on the cellular uptake of AuNRs. A comparison study using horizontal and vertical cell culture configurations was performed to reveal the effect of NPs sedimentation on AuNRs uptake at the single-cell level. Our results demonstrate that the well-dispersed AuNRs-BSA complexes were more stable in culture medium than the pristine AuNRs, and therefore were less taken up by cells. The settled AuNRs agglomerates, although only a small fraction of the total AuNRs, weighed heavily in determining the average AuNRs uptake at the population level. These findings highlight the necessity of applying single-cell quantification analysis in the study of the mechanisms underlying the cellular uptake of NPs.","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"136 3-4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano12050749","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Nanoparticles (NPs) suspension is thermodynamically unstable, agglomeration and sedimentation may occur after introducing NPs into a physiological solution, which in turn affects their recognition and uptake by cells. In this work, rod-like gold NPs (AuNRs) with uniform morphology and size were synthesized to study the impact of bovine serum albumin (BSA) pre-coating on the cellular uptake of AuNRs. A comparison study using horizontal and vertical cell culture configurations was performed to reveal the effect of NPs sedimentation on AuNRs uptake at the single-cell level. Our results demonstrate that the well-dispersed AuNRs-BSA complexes were more stable in culture medium than the pristine AuNRs, and therefore were less taken up by cells. The settled AuNRs agglomerates, although only a small fraction of the total AuNRs, weighed heavily in determining the average AuNRs uptake at the population level. These findings highlight the necessity of applying single-cell quantification analysis in the study of the mechanisms underlying the cellular uptake of NPs.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.