M0, 5: Toward the Chabauty–Kim method in higher dimensions

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-08-07 DOI:10.1112/mtk.12215
Ishai Dan-Cohen, David Jarossay
{"title":"M0, 5: Toward the Chabauty–Kim method in higher dimensions","authors":"Ishai Dan-Cohen,&nbsp;David Jarossay","doi":"10.1112/mtk.12215","DOIUrl":null,"url":null,"abstract":"<p>If <i>Z</i> is an open subscheme of <math>\n <semantics>\n <mrow>\n <mo>Spec</mo>\n <mi>Z</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}\\mathbb {Z}$</annotation>\n </semantics></math>, <i>X</i> is a sufficiently nice <i>Z</i>-model of a smooth curve over <math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math>, and <i>p</i> is a closed point of <i>Z</i>, the Chabauty–Kim method leads to the construction of locally analytic functions on <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>(</mo>\n <msub>\n <mi>Z</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$X({\\mathbb {Z}_p})$</annotation>\n </semantics></math> which vanish on <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>(</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$X(Z)$</annotation>\n </semantics></math>; we call such functions “Kim functions”. At least in broad outline, the method generalizes readily to higher dimensions. In fact, in some sense, the surface <i>M</i><sub>0, 5</sub> should be easier than the previously studied curve <math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mn>4</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <msup>\n <mi>P</mi>\n <mn>1</mn>\n </msup>\n <mo>∖</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$M_{0,4} = \\mathbb {P}^1 \\setminus \\lbrace 0,1,\\infty \\rbrace$</annotation>\n </semantics></math> since its points are closely related to those of <i>M</i><sub>0, 4</sub>, yet they face a further condition to integrality. This is mirrored by a certain <i>weight advantage</i> we encounter, because of which, <i>M</i><sub>0, 5</sub> possesses <i>new Kim functions</i> not coming from <i>M</i><sub>0, 4</sub>. Here we focus on the case “<math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>[</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>6</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$\\mathbb {Z}[1/6]$</annotation>\n </semantics></math> in half-weight 4,” where we provide a first nontrivial example of a Kim function on a surface. Central to our approach to Chabauty–Kim theory (as developed in works by Wewers, Corwin, and the first author) is the possibility of separating the geometric part of the computation from its arithmetic context. However, we find that in this case the geometric step grows beyond the bounds of standard algorithms running on current computers. Therefore, some ingenuity is needed to solve this seemingly straightforward problem, and our new Kim function is huge.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12215","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12215","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

If Z is an open subscheme of Spec Z $\operatorname{Spec}\mathbb {Z}$ , X is a sufficiently nice Z-model of a smooth curve over Q $\mathbb {Q}$ , and p is a closed point of Z, the Chabauty–Kim method leads to the construction of locally analytic functions on X ( Z p ) $X({\mathbb {Z}_p})$ which vanish on X ( Z ) $X(Z)$ ; we call such functions “Kim functions”. At least in broad outline, the method generalizes readily to higher dimensions. In fact, in some sense, the surface M0, 5 should be easier than the previously studied curve M 0 , 4 = P 1 { 0 , 1 , } $M_{0,4} = \mathbb {P}^1 \setminus \lbrace 0,1,\infty \rbrace$ since its points are closely related to those of M0, 4, yet they face a further condition to integrality. This is mirrored by a certain weight advantage we encounter, because of which, M0, 5 possesses new Kim functions not coming from M0, 4. Here we focus on the case “ Z [ 1 / 6 ] $\mathbb {Z}[1/6]$ in half-weight 4,” where we provide a first nontrivial example of a Kim function on a surface. Central to our approach to Chabauty–Kim theory (as developed in works by Wewers, Corwin, and the first author) is the possibility of separating the geometric part of the computation from its arithmetic context. However, we find that in this case the geometric step grows beyond the bounds of standard algorithms running on current computers. Therefore, some ingenuity is needed to solve this seemingly straightforward problem, and our new Kim function is huge.

Abstract Image

M0,5:朝着更高维度的Chabauty-Kim方法
如果Z是的开子格式,X是光滑曲线上的一个足够好的Z‐模型,p是Z的一个闭点,则Chabauty-Kim方法构造了局部解析函数,其在上消失;我们称这种函数为“金函数”。至少在大致轮廓上,该方法很容易推广到更高的维度。事实上,从某种意义上说,曲面M0, 5应该比前面研究的曲线更容易,因为它的点与M0, 4的点密切相关,但它们面临着进一步的完整性条件。这反映在我们遇到的某种权重优势上,因此,m0,5拥有新的Kim函数,而不是来自m0,4。在这里,我们关注的是“在一半重量4”的情况,我们提供了曲面上的Kim函数的第一个非平凡的例子。我们研究Chabauty-Kim理论(由Wewers、Corwin和第一作者开发)的核心方法是将计算的几何部分与其算术上下文分离的可能性。然而,我们发现在这种情况下,几何步长超出了当前计算机上运行的标准算法的范围。因此,需要一些聪明才智来解决这个看似简单的问题,而我们的新Kim函数非常庞大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信