Comparative Simulation Analysis of Process Parameter Variations in 20 nm Triangular FinFET

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Satyam Shukla, S. S. Gill, Navneet Kaur, H. S. Jatana, Varun Nehru
{"title":"Comparative Simulation Analysis of Process Parameter Variations in 20 nm Triangular FinFET","authors":"Satyam Shukla, S. S. Gill, Navneet Kaur, H. S. Jatana, Varun Nehru","doi":"10.1155/2017/5947819","DOIUrl":null,"url":null,"abstract":"Technology scaling below 22 nm has brought several detrimental effects such as increased short channel effects (SCEs) and leakage currents. In deep submicron technology further scaling in gate length and oxide thickness can be achieved by changing the device structure of MOSFET. For 10–30 nm channel length multigate MOSFETs have been considered as most promising devices and FinFETs are the leading multigate MOSFET devices. Process parameters can be varied to obtain the desired performance of the FinFET device. In this paper, evaluation of on-off current ratio ( ), subthreshold swing (SS) and Drain Induced Barrier Lowering (DIBL) for different process parameters, that is, doping concentration (1015/cm3 to 1018/cm3), oxide thickness (0.5 nm and 1 nm), and fin height (10 nm to 40 nm), has been presented for 20 nm triangular FinFET device. Density gradient model used in design simulation incorporates the considerable quantum effects and provides more practical environment for device simulation. Simulation result shows that fin shape has great impact on FinFET performance and triangular fin shape leads to reduction in leakage current and SCEs. Comparative analysis of simulation results has been investigated to observe the impact of process parameters on the performance of designed FinFET.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/5947819","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/5947819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 16

Abstract

Technology scaling below 22 nm has brought several detrimental effects such as increased short channel effects (SCEs) and leakage currents. In deep submicron technology further scaling in gate length and oxide thickness can be achieved by changing the device structure of MOSFET. For 10–30 nm channel length multigate MOSFETs have been considered as most promising devices and FinFETs are the leading multigate MOSFET devices. Process parameters can be varied to obtain the desired performance of the FinFET device. In this paper, evaluation of on-off current ratio ( ), subthreshold swing (SS) and Drain Induced Barrier Lowering (DIBL) for different process parameters, that is, doping concentration (1015/cm3 to 1018/cm3), oxide thickness (0.5 nm and 1 nm), and fin height (10 nm to 40 nm), has been presented for 20 nm triangular FinFET device. Density gradient model used in design simulation incorporates the considerable quantum effects and provides more practical environment for device simulation. Simulation result shows that fin shape has great impact on FinFET performance and triangular fin shape leads to reduction in leakage current and SCEs. Comparative analysis of simulation results has been investigated to observe the impact of process parameters on the performance of designed FinFET.
20nm三角FinFET工艺参数变化的比较仿真分析
技术规模低于22 nm带来了一些不利影响,例如增加的短沟道效应(SCE)和漏电流。在深亚微米技术中,可以通过改变MOSFET的器件结构来实现栅极长度和氧化物厚度的进一步缩放。10–30 nm沟道长度的多栅极MOSFET被认为是最有前途的器件,而FinFET是领先的多栅极FET器件。工艺参数可以变化以获得FinFET器件的期望性能。在本文中,对不同工艺参数(即掺杂浓度(1015/cm3至1018/cm3)、氧化物厚度(0.5 nm和1 nm)和翅片高度(10 nm至40 nm),已经存在了20 nm三角形FinFET器件。设计模拟中使用的密度梯度模型融合了可观的量子效应,为器件模拟提供了更实用的环境。仿真结果表明,翅片形状对FinFET的性能有很大影响,三角形翅片形状可以降低漏电流和SCE。对仿真结果进行了比较分析,观察了工艺参数对设计的FinFET性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信